K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 11 2018

Lời giải:
\(\left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^{x+3}=\frac{9}{256}\)

\(\Leftrightarrow \left(\frac{1}{2}\right)^x+\left(\frac{1}{2}\right)^x.\left(\frac{1}{2}\right)^3=\frac{9}{256}\)

\(\Leftrightarrow \left(\frac{1}{2}\right)^x.(1+\frac{1}{8})=\frac{9}{256}\Rightarrow \left(\frac{1}{2}\right)^x=\frac{1}{32}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow x=5\)

27 tháng 7 2017

h) \(5^x+5^{x+2}=650\)

\(\Leftrightarrow5^x+5^x.5^2=650\)

\(\Leftrightarrow5^x\left(1+25\right)=650\)

\(\Leftrightarrow5^x.26=650\)

\(\Leftrightarrow5^x=25\)

\(\Leftrightarrow x=2\)

haizzz,đăng ít thôi,chứ nhìn hoa mắt quá =.=

1 tháng 8 2017

bây định làm j ở chỗ này vậy??? có j ib ns vs nhao chớ sao ns ở đây

a: \(\Leftrightarrow\left(\dfrac{12}{25}\right)^x=\dfrac{9}{25}-\dfrac{81}{625}=\dfrac{144}{625}\)

=>x=2

b: =>3x-1=-4

=>3x=-3

hay x=-1

 

17 tháng 5 2017

\(\dfrac{-1}{4}x+\dfrac{2}{3}=\dfrac{5}{9}\)\(\Rightarrow\)\(\dfrac{-1}{4}x=\dfrac{5}{9}-\dfrac{2}{3}\)=\(\dfrac{-1}{9}\)

\(\Rightarrow\) x = \(\dfrac{-1}{9}:\dfrac{-1}{4}\)=\(\dfrac{4}{9}\).

\(x.\left(\dfrac{3}{5}\right)^3=\dfrac{3}{5}\)

\(\Rightarrow\)x=\(\dfrac{3}{5}:\left(\dfrac{3}{5}\right)^3=\left(\dfrac{3}{5}\right)^{-2}\)= \(2\dfrac{7}{9}\)

\(\left|x\right|\) + \(\dfrac{1}{5}=2-\left(\dfrac{2}{3}-\dfrac{3}{4}\right)\)=2 - \(\dfrac{-1}{12}\)=2\(\dfrac{1}{12}\)

\(\Rightarrow\)\(\left|x\right|\)=\(2\dfrac{1}{12}\)-\(\dfrac{1}{5}\)=\(1\dfrac{53}{60}\)

\(\Rightarrow\)x=\(\left[{}\begin{matrix}1\dfrac{53}{60}\\-1\dfrac{53}{60}\end{matrix}\right.\)

\(\left(\dfrac{-3}{4}\right)^x=\dfrac{81}{256}\)=\(\dfrac{(-3)^4}{4^4}\)=\(\left(\dfrac{-3}{4}\right)^4\)

\(\Rightarrow\) x = 4

17 tháng 5 2017

14 Mẹo Vặt Sáng Tạo Dành Cho Học Sinh - YouTube

thử xem mẹo thứ 5 đi chứ theo mk đây là bài toán dễ lớp 6

30 tháng 10 2022

a: \(\Leftrightarrow2x-3=x\)

=>x=3

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+\dfrac{5}{4}\cdot2^x=\dfrac{7}{32}\)

=>2^x=1/8

=>x=-3

c: =>2x+7=-4

=>2x=-11

=>x=-11/2

d: =>(4x-3)^2*(4x-4)(4x-2)=0

hay \(x\in\left\{\dfrac{3}{4};1;\dfrac{1}{2}\right\}\)

1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)

=>4x=18

hay x=9/2

2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)

\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)

=>4x=108

hay x=27

3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)

\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)

=>4x=12

hay x=3

30 tháng 10 2017

\(\left|x+\dfrac{1}{1.5}\right|+\left|x+\dfrac{1}{5.9}\right|+\left|x+\dfrac{1}{9.14}\right|+...+\left|x+\dfrac{1}{397.401}\right|\ge0\)

\(\Rightarrow101x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\dfrac{1}{1.5}+x+\dfrac{1}{5.9}+...+x+\dfrac{1}{397.401}=101x\)

\(\Rightarrow101x+\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{397.401}\right)=x\)

\(\Rightarrow\dfrac{1}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{397.401}\right)=x\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+....+\dfrac{1}{397}-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}\left(1-\dfrac{1}{401}\right)\)

\(\Rightarrow x=\dfrac{1}{4}.\dfrac{400}{401}\)

\(\Rightarrow x=\dfrac{100}{401}\)

26 tháng 9 2017

\(\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^x\right]^x-\dfrac{5}{8}=\dfrac{1}{16}\cdot\left(-9\right)\)

\(\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^x\right]^x-\dfrac{5}{8}=\dfrac{-9}{16}\)

\(\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^x\right]^x=\dfrac{-9}{16}+\dfrac{5}{8}\)

\(\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^x\right]^x=\dfrac{1}{16}\)

\(\left(\dfrac{1}{2}\right)^3\cdot\left[\left(\dfrac{1}{2}\right)^x\right]^x=\left(\dfrac{1}{2}\right)^4\)

\(\left[\left(\dfrac{1}{2}\right)^x\right]^x=\left(\dfrac{1}{2}\right)^4\div\left(\dfrac{1}{2}\right)^3\)

\(\left[\left(\dfrac{1}{2}\right)^x\right]^x=\dfrac{1}{2}\)

\(\left[\left(\dfrac{1}{2}\right)^x\right]^x=\left[\left(\dfrac{1}{2}\right)^1\right]^1\)

\(\Rightarrow x=1\)