Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1x64}{2x64}+\frac{1x32}{4x32}+\frac{1x16}{8x16}+\frac{1x8}{16x8}+\frac{1x4}{32x4}+\frac{1x2}{64x2}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)
\(=\left(\frac{64}{128}+\frac{1}{128}\right)+\left(\frac{32}{128}+\frac{8}{128}\right)+\left(\frac{16}{128}+\frac{4}{128}\right)\)
\(=\frac{65}{128}+\frac{40}{128}+\frac{20}{128}\)
\(=125\)
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
A=1-1/2+1/2-1/3+1/3-1/4+...+1/64-1/128
A=1-1/128
A=127/128
Vậy A=\(\frac{127}{128}\)
B=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
B=1-1/100
B=99/100
Vậy B=\(\frac{99}{100}\)
\(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)
\(2A=\frac{1}{2}\times2+\frac{1}{4}\times2+\frac{1}{8}\times2+\frac{1}{16}\times2+\frac{1}{32}\times2+\frac{1}{64}\times2+\frac{1}{128}\times2+\frac{1}{256}\times2\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(2A-A=\left(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\right)\)
\(A=1-\frac{1}{256}\)
\(A=\frac{255}{256}\)
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
a) A= 1/2 + 1/4+ 1/8+ 1/16 + 1/32 + 1/64 + 1/128 + 1/256 + 1/512
A = 1 - 1/2 + 1/2- 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + 1/16 - 1/32 + 1/32 - 1/64 + 1/64 - 1/128 + 1/128 - 1/256 - 1/256 - 1/512
A = 1 - 1/512
A = 511/512
b) B = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
3B = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
3B - B = 1 - 1/729
2B = 728/729
B = 364/729
toán 6 nha:
A=1/2+1/4+1/8+1/16+1/32+1/64+1/28
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/64
1/128+A=1/2+1/4+1/8+1/16+1/32+1/32
1/128+A=1/2+1/4+1/8+1/16+1/16
1/128+A=1/2+1/4+1/8+1/8
1/128+A=1/2+1/4+1/4
1/128+A=1/2+1/2
1/128+A=1
A=1-1/128
a=127/128