Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toán 6 nha:
A=1/2+1/4+1/8+1/16+1/32+1/64+1/28
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/64
1/128+A=1/2+1/4+1/8+1/16+1/32+1/32
1/128+A=1/2+1/4+1/8+1/16+1/16
1/128+A=1/2+1/4+1/8+1/8
1/128+A=1/2+1/4+1/4
1/128+A=1/2+1/2
1/128+A=1
A=1-1/128
a=127/128
2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
kq = \(\frac{127}{128}\)Bạn chỉ cần bấm máy tính là ra bài này dễ mà hihi :D :))
1/2+1/4+1/8+1/16+1/32+1/64+1/128
=3/4+3/16+3/64+1/128
=15/16+5/128
=125/128
1/2 +1/4 +1/8 + 1/16 + 1/32 +1/64 +1/128
=1-1/2+1/2-1/4+1/4-1/8+...+1/64-1/128
=1-1/128
=127/128
gọi tổng đó là A ta có :
A = 1/2 + 1/4 + 1/8 +1/16 + 1/32 +1/64 + 1/128
2A= ( 1/2 * 2) + ( 1/4 * 2 ) + ( 1/8 * 2) + ( 1/16 * 2) + ( 1/32 * 2 ) + ( 1/64 * 2 ) + ( 1/128 * 2)
2A= 1+ 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
TA LẤY 2A - 1A = 1A
A = ( 1 + 1/2 +1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
TA THẤY 1/2 - 1/2 = 0 ; 1/4 - 1/4 = 0 ; 1/8 - 1/8 = 0 ;1/16 - 1/16 = 0 ; 1/32 - 1/32 = 0 ; 1/64- 1/64 = 0
NÊN A = 1 - 1/128 = 127/128
127/128
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=\frac{1x64}{2x64}+\frac{1x32}{4x32}+\frac{1x16}{8x16}+\frac{1x8}{16x8}+\frac{1x4}{32x4}+\frac{1x2}{64x2}+\frac{1}{128}\)
\(=\frac{64}{128}+\frac{32}{128}+\frac{16}{128}+\frac{8}{128}+\frac{4}{128}+\frac{2}{128}+\frac{1}{128}\)
\(=\left(\frac{64}{128}+\frac{1}{128}\right)+\left(\frac{32}{128}+\frac{8}{128}\right)+\left(\frac{16}{128}+\frac{4}{128}\right)\)
\(=\frac{65}{128}+\frac{40}{128}+\frac{20}{128}\)
\(=125\)