Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 1/4 + 1/8 + 1/16+ 1/32 + 1/64 + 1/128
= 64/ 128 + 32/128 + 16/128 +8/128 + 4/128 +2/128 + 1/128
= ( 64 + 32 + 16 + 8 + 4 + 2 + 1 ) /128
= 127/ 128
= 1 - 1/2 + 1/2 - 1/4 + 1/4 - ............ + 1/64 - 1/128
= 1 - 1/128
= 127/128
k nha bn
2A=1+1/2+1/4+1/8+1/16+1/32+1/64
2A-A=(1+1/2+1/4+1/8+1/16+1/32+1/64)-(1/2+1/4+1/8+1/16+1/32+1/64+1/128)
A=1-1/128
A=127/128
A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
suy ra: 2A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
2A - A = 1 + 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 - 1/2 - 1/4 - 1/8 - 1/16 - 1/32 - 1/64 - 1/128
A = 1 - 1/128 = 127/128
hok tốt
Ta có : \(A=\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\)
\(\Rightarrow2A=1+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^6}+\frac{1}{2^7}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^6}+\frac{1}{2^7}\right)-\left(\frac{1}{2^1}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}+\frac{1}{2^8}\right)\)
\(\Rightarrow A=1-\frac{2}{8}=\frac{256}{256}-\frac{1}{256}=\frac{255}{256}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+...+\frac{1}{128}=1-\frac{1}{128}=\frac{127}{128}\)
a: \(A=\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{2}\right)^3+...+\left(\dfrac{1}{2}\right)^7\)
=>\(2\cdot A=1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^6\)
=>\(2A-A=1-\left(\dfrac{1}{2}\right)^7=1-\dfrac{1}{128}=\dfrac{127}{128}\)
=>\(A=\dfrac{127}{128}\)
b: \(B=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{10\cdot11}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+\frac{1}{8}-\frac{1}{16}+\frac{1}{16}-\frac{1}{32}+\frac{1}{32}-\frac{1}{64}+\frac{1}{64}-\frac{1}{128}\)
\(=1-\frac{1}{128}\)
\(=\frac{127}{128}\)
toán 6 nha:
A=1/2+1/4+1/8+1/16+1/32+1/64+1/28
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/128+1/128
1/128+A=1/2+1/4+1/8+1/16+1/32+1/64+1/64
1/128+A=1/2+1/4+1/8+1/16+1/32+1/32
1/128+A=1/2+1/4+1/8+1/16+1/16
1/128+A=1/2+1/4+1/8+1/8
1/128+A=1/2+1/4+1/4
1/128+A=1/2+1/2
1/128+A=1
A=1-1/128
a=127/128
A=1-1/2+1/2-1/3+1/3-1/4+...+1/64-1/128
A=1-1/128
A=127/128
Vậy A=\(\frac{127}{128}\)
B=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
B=1-1/100
B=99/100
Vậy B=\(\frac{99}{100}\)
sao?