Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-2\right)^4\ge0\forall x\)dấu "=" xảy ra \(\Leftrightarrow\)x-2=0 \(\Leftrightarrow\)x=2
\(\left(2y-1\right)^{2014}\ge0\forall y\)Dấu "=" xảy ra \(\Leftrightarrow\)2y - 1=0 \(\Leftrightarrow y=\frac{1}{2}\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2014}\ge0\)
Kết hợp với điều kiện đề bài \(\left(x-1\right)^4+\left(2y-1\right)^{2014}\le0\), ta được:
\(\left(x-2\right)^4+\left(2y-1\right)^{2014}=0\)
Vậy x = 2; \(y=\frac{1}{2}\)
Thay x=2; \(y=\frac{1}{2}\)vào M, ta có:
\(M=21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\)
\(=21.4.\frac{1}{2}+4.2.\frac{1}{4}\)
\(=42+2=44\)
Vậy M=44
\(\left(x-45\right)^2=-\left|2y+5\right|\Leftrightarrow\left(x-45\right)^2+\left|2y+5\right|=0\)
Vì \(\left(x-45\right)^2\ge0;\left|2y+5\right|\ge0\) =>\(\left(x-45\right)^2+\left|2y+5\right|\ge0\)
Dấu "=" xảy ra khi \(\left(x-45\right)^2=0;\left|2y+5\right|=0\)
(x-45)2=0 <=> x-45=0 <=> x=45
|2y+5|=0 <=> 2y+5=0 <=> 2y=-5 <=> y=-5/2
bạn tự thay x;y vào M để tính nhé
a, x^2-x=0
<=> x(x-1)=0 => x=0 hoặc x=1 thay vào A là tính được
b,có cho y đâu mà tính
Ta có: \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2022}\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2022}\ge0\forall x,y\)
Mà: \(\left(x-2\right)^4+\left(2y-1\right)^{2022}\le0\)
Do đó: \(\left(x-2\right)^4+\left(2y-1\right)^{2022}=0\)
Khi đó: \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=2;y=\dfrac{1}{2}\) vào M, ta được:
\(M=21\cdot2\cdot\left(\dfrac{1}{2}\right)^2+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)
\(=25\cdot2\cdot\left(\dfrac{1}{2}\right)^2=\dfrac{25}{2}\)
\(\text{#}Toru\)
(\(x\) - 2)4 + (2y - 1)2022 ≤ 0
Vì: ( \(x-2\))4 ≥ 0 \(\forall\) \(x\); (2y - 1)2022 ≥ 9 \(\forall\) y
Vậy (\(x-2\))4 + (2y - 1)2022 = 0
⇒ \(\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=2\\2y=1\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\) (1)
Thay hệ (1) vào biểu thức M = 21\(xy^2\) + 4\(xy^2\)
M = 21.2.\(\dfrac{1}{2^2}\) + 4.2.\(\dfrac{1}{2^2}\)
M = 2.\(\dfrac{1}{2^2}\).(21 + 4)
M = \(\dfrac{1}{2}\).25
M = \(\dfrac{25}{2}\)