Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2023}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2022}{2023}\\ =\dfrac{1}{2023}\)
Bài giải
a, \(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\text{ : }\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)=\left(\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\right)\text{ : }\left(\frac{5}{30}+\frac{3}{30}-\frac{2}{30}\right)=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)
b, \(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)\text{ : }\left(\frac{1}{4}-\frac{1}{5}\right)=\left(\frac{60}{120}-\frac{40}{120}+\frac{30}{120}-\frac{24}{120}\right)\text{ : }\left(\frac{5}{20}-\frac{4}{20}\right)=\frac{13}{60}\text{ : }\frac{1}{20}=\frac{13}{3}\)
Ta có :
a, \(\left(\frac{1}{6}+\frac{1}{10}+\frac{1}{15}\right)\text{ : }\left(\frac{1}{6}+\frac{1}{10}-\frac{1}{15}\right)=\left(\frac{5}{30}+\frac{3}{30}+\frac{2}{30}\right)\text{ : }\left(\frac{5}{30}+\frac{3}{30}-\frac{2}{30}\right)=\frac{1}{3}-\frac{1}{5}=\frac{2}{15}\)
b,
\(\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}\right)\text{ : }\left(\frac{1}{4}-\frac{1}{5}\right)=\left(\frac{60}{120}-\frac{40}{120}+\frac{30}{120}-\frac{24}{120}\right)\text{ : }\left(\frac{5}{20}-\frac{4}{20}\right)=\frac{13}{60}\text{ : }\frac{1}{20}=\frac{13}{3}\)
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{729.3}\)
\(A=1+\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
=> \(3A=3+1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
=> \(3A-A=3+1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^6}-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)\)
<=> \(2A=3-\frac{1}{3^7}=\frac{3^8-1}{3^7}\)
=> \(A=\frac{3^8-1}{2.3^7}\)
\(\dfrac{11}{2}\): \(\dfrac{1}{4}\) \(\times\) \(\dfrac{5}{3}\)
= \(\dfrac{11}{2}\) \(\times\) \(\dfrac{4}{1}\) \(\times\) \(\dfrac{5}{3}\)
= 22 \(\times\) \(\dfrac{5}{3}\)
= \(\dfrac{110}{3}\)
\(\dfrac{5}{2}-\dfrac{1}{4}+\dfrac{5}{3}\)
= \(\dfrac{30}{12}-\dfrac{3}{12}+\dfrac{20}{12}\)
= \(\dfrac{7}{12}\)
\(\dfrac{14}{5}\times\dfrac{2}{3}\)+ 5
= \(\dfrac{28}{15}\) + 5
= \(\dfrac{28}{15}\) + \(\dfrac{75}{15}\)
= \(\dfrac{103}{15}\)
\(\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+50}\)
\(=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+\frac{1}{\frac{4\left(4+1\right)}{2}}+...+\frac{1}{\frac{50\left(50+1\right)}{2}}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{50.51}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{50}-\frac{1}{51}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{51}\right)\)
\(=\frac{49}{51}\)
a: Thay a=9 và b=15 vào P, ta được:
\(P=\left(9+1\right)\cdot2+\left(15+1\right)\cdot3\)
\(=10\cdot2+16\cdot3=20+48=68\)
b: \(m=2\cdot a+3\cdot b+5=2\cdot9+3\cdot15+5=68\)
mà P=68
nên P=m
\(A=\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{2021}\right)\)
\(=\frac{3}{2}\cdot\frac{4}{3}\cdot\frac{5}{4}\cdot...\cdot\frac{2022}{2021}\)
\(=\frac{2022}{2}\)
\(=1011\)
A= 1* (1/2+1/3+1/4+...+2021)
A= 1/2+1/3+1/4+...+2021
Mik sẽ ko tính giúp bạn hết toàn bộ để bạn có thể tự làm được!