Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: 3x = 2y; 4x = 2z
⇒ \(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)
⇒ \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)
⇒ \(\dfrac{x}{2}=3\) ⇒ x = 6
\(\dfrac{y}{3}=3\) ⇒ y = 9
\(\dfrac{z}{4}=3\) ⇒ z = 12
Vậy x = 6 ; y = 9 ; z = 12
b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)
⇒ \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)
⇒ \(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)
và 2x2 + 3y2 - 5z2 = -405
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)
+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2
⇒ x2 = 36 ⇒ x = 6 hoặc x = -6
+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3
⇒ y2 = 81 ⇒ y = 9 hoặc y = -9
+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5
⇒ z2 = 144 ⇒ z = 12 hoặc z = -12
Vậy...................................( bạn tự vậy nhé )
c) Giống câu a ( bạn tự chép lại )
d) Mik ko bt lm
CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
a)
2009-|x-2009|=x
=> 2009-x=|x-2009|
=> 2009-x=|2009-x|
=> 2009-x=2009-x
vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài
b)
(2x-1)2008+(y-2/5)2008 +|x+y+z|=0
ta có: (2x-1)2008 luôn lớn hơn hoặc bằng 0
(y-2/5)2008 luôn lớn hơn hoặc bằng 0
|x+y+z| luôn lớn hơn hoặc bằng 0
dấu "=" xảy ra khi
2x-1=y-2/5=x+y+z=0
+2x-1=0=> 2x=1=> x=1/2
+y-2/5=0=> y=2/5
+x+y+z=0=> 1/2+2/5+z=0
=> z=-9/10
\(b.\)
Theo đề : \(2x=3y=5z\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\) và \(x+y-x=95\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)
\(\Rightarrow x=75;y=50;z=30\)
\(d.\)
Đặt : \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow x=2k;y=5k\)
Thay \(x=2k;y=5k\) vào \(xy=90\)
\(\left(2k\right)\left(5k\right)=90\)
\(\Rightarrow10k^2=90\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=\pm3\)
+ Nếu \(k=3\Rightarrow x=6;y=15\)
+ Nếu \(k=-3\Rightarrow x=-6;y=-15\)
\(e.\)
Tương tự với câu \(d\)
a) Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{8}=\frac{z}{7}=\frac{t}{6}=\frac{x-t}{9-6}=\frac{30}{3}=10\)
x/9=10 => x=90
y/8=10 => y=80
z/7=10 => z=70
t/6=10 => t=60
b) 3y=5z \(\Rightarrow\frac{y}{5}=\frac{z}{3}\)
x/4=y/3 ; y/5=z/3 \(\Rightarrow\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{100}{-4}=-25\)
x/20=-25 => x=-500
y/15=-25 => y=-375
z/9=-25 => z=-225
a)
+ Áp dụng tính chất dãy tỉ số bằng nhau, ta có
\(\frac{x}{9}=\frac{t}{6}\)⇒ \(\frac{x-t}{9-6}=\frac{30}{3}=10\)
+ Ta có:
\(\frac{x}{9}=10\)⇒x=10.9=90
\(\frac{y}{8}=10\)⇒y=10.8=80
\(\frac{z}{7}=10\)⇒z=10.7=70
\(\frac{t}{6}=10\)⇒t=10.6=60
Vậy x=90; y=80; z=70 và t=60.
a) Giải:
Ta có: \(a,b,c>0\Rightarrow a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{a+b+c}{2b+c+2c+a+2a+b}=\frac{a+b+c}{3a+3b+3c}=\frac{a+b+c}{3\left(a+b+c\right)}=\frac{1}{3}\)
Vậy \(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b}=\frac{1}{3}\)
1,a)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{x+y}{7}=\dfrac{14}{7}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{4}=2\\\dfrac{y}{3}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=8\\y=6\end{matrix}\right.\)
1,b)Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{19}=\dfrac{y}{21}=\dfrac{2x}{38}=\dfrac{2x-y}{38-21}=\dfrac{34}{17}=2\)
\(=>\left\{{}\begin{matrix}\dfrac{x}{19}=2\\\dfrac{y}{21}=2\end{matrix}\right.=>\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=38\\y=42\end{matrix}\right.\)
Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x
\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y
|x+y-z| \(\ge\)0
Suy ra 2x-1=0 nên x=\(\frac{1}{2}\)
y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)
và x+y-z=0 hay \(\frac{1}{2}+\frac{2}{5}\)-z=0 suy ra z=\(\frac{9}{10}\)
=>x-2=0; x+y=0; 2x-2z=0
=>x=0; y=0; z=0