K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

Ta có \(\left(2x-1\right)^{2008}\)\(\ge0\)với mọi x

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)với mọi y

|x+y-z| \(\ge\)

Suy ra 2x-1=0  nên x=\(\frac{1}{2}\)

y-\(\frac{2}{5}\)=0 nên y=\(\frac{2}{5}\)

và x+y-z=0    hay   \(\frac{1}{2}+\frac{2}{5}\)-z=0   suy ra z=\(\frac{9}{10}\)

6 tháng 8 2016

a)

2009-|x-2009|=x

=> 2009-x=|x-2009|

=> 2009-x=|2009-x|

=> 2009-x=2009-x

vậy với mọi giá trị x thuộc R thoả mãn yêu cầu đề bài

b)

(2x-1)2008+(y-2/5)2008 +|x+y+z|=0

ta có: (2x-1)2008 luôn lớn hơn hoặc  bằng 0

(y-2/5)2008  luôn lớn hơn hoặc bằng 0

|x+y+z| luôn lớn hơn hoặc bằng 0

dấu "=" xảy ra khi 

2x-1=y-2/5=x+y+z=0

+2x-1=0=> 2x=1=> x=1/2

+y-2/5=0=> y=2/5

+x+y+z=0=> 1/2+2/5+z=0

=> z=-9/10

11 tháng 12 2017

Theo bài ra ta có 

(2*-1)^2008>=0 với mọi x

(y-2/5)>=0 với mọi y

|x+y-z|>=0 với mọi x; y; z

=>(3 cái trên) >=0 với mọi x y z

Với (đề bài)

<=>2x-1 mũ 2008=0

y-2/5=0

x+y-z=0

=>x=1/2;y=2/5;z=x+y=1/2+2/5=9/10

R kết luận

>= là lớn hơn hoặc bg

23 tháng 8 2019

\(\left(2x-1\right)^{2008}\ge0với\forall x\) mà,\(\left(y-\frac{2}{5}\right)^{2008}\ge0với\forall y\)lại có\(|x+y+z|\ge0với\forall x,y,z\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0với\forall x,y,z\)Dấu ''='' xảy ra khi \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y+z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}}\)

19 tháng 1 2020

\(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)+\left|x+y+z\right|=0\)

Ta có \(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\forall x\\y-\frac{2}{5}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x;y;z\end{cases}}\)

 => \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)+\left|x+y+z\right|\ge0\forall x;y;z\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(2x-1\right)^{2008}=0\\y-\frac{2}{5}=0\\\left|x+y+z\right|=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y=\frac{2}{5}\\x+y+z=0\end{cases}}\)

                        \(\Leftrightarrow\hept{\begin{cases}2x=1\\y=\frac{2}{5}\\x+y+z=0\end{cases}}\)

                          \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\x+y+z=0\end{cases}}\)

                         \(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=0-\frac{1}{2}-\frac{2}{5}=\frac{-5}{10}-\frac{4}{10}=\frac{-9}{10}\end{cases}}\)

Vậy \(x=\frac{1}{2};y=\frac{2}{5};z=\frac{-9}{10}\)

Học tốt

28 tháng 3 2018

(2x - 1 )2008+(y - 2/5)2008 + |x + y - z | = 0

=> ( 2x - 1) 2008 =0                     => 2x - 1 =0                => 2x = 1                       => x = 1/2 

     ( y - 2/5 )2008 = 0                        y - 2/5 = 0                   y =2/5                           y = 2/5

     |x + y -z | = 0                             x + y - z = 0                x + 2/5 - z = 0                1/2 - 2/5  -z = 0 

=>x = 1/2              =>x = 1/2

    y = 2/5                  y = 2/5

    5/10 - 4/10 = z       z = 1/ 10

                                                                 Vậy x = 1/2 ; y = 2/5 : z = 1/10

( nhớ cho mk nha )

28 tháng 3 2018

ta có: \(\left(2x-1\right)^{2008}\ge0\)

\(\left(y-\frac{2}{5}\right)^{2008}\ge0\)

\(\left|x+y-z\right|\ge0\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|\ge0\)

để \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y-z\right|=0\)

\(\Rightarrow\left(2x-1\right)^{2008}=0\Rightarrow2x-1=0\Rightarrow x=\frac{1}{2}\)

\(\left(y-\frac{2}{5}\right)^{2008}=0\Rightarrow y-\frac{2}{5}=0\Rightarrow\frac{2}{5}\)

\(\left|x+y-z\right|=0\Rightarrow x+y-z=0\Rightarrow z=x+y\Rightarrow z=\frac{1}{2}+\frac{2}{5}=\frac{9}{10}\)

KL: x= 1/2; y= 2/5; z=9/10

( mk nghĩ nó còn có nhiều đáp số lắm, nhưng mk ko bít cách lm)

25 tháng 8 2021

Vì \(\left(2x-1\right)^{2008}\ge0\forall x;\left(y-\frac{2}{5}\right)^{2008}\ge0\forall y;\left|x+y+z\right|\ge0\forall x;y;z\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|\ge0\forall x;y;z\)

mà \(\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

Đẳng thức xảy ra khi \(x=\frac{1}{2};y=\frac{2}{5};z=-\frac{9}{10}\)

25 tháng 8 2021

Vì \(\hept{\begin{cases}\left(2x-1\right)^{2008}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2008}\ge0\forall y\\\left|x+y+z\right|\ge0\forall x,y,z\end{cases}}\)

\(\Rightarrow\left(2x-1\right)^{2008}+\left(y-\frac{2}{5}\right)^{2008}+\left|x+y+z\right|=0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(2x-1\right)^{2008}=0\\\left(y-\frac{2}{5}\right)^{2008}=0\\\left|x+y+z\right|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\\frac{1}{2}+\frac{2}{5}+z=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=-\frac{9}{10}\end{cases}}\)

Vậy \(\left(x,y,z\right)=\left(\frac{1}{2};\frac{2}{5};-\frac{9}{10}\right)\)

10 tháng 4 2018

id như 1 trò đùa

xin lỗi -z chứ không phải +z