K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

-2x^2 - y^2 + 3xy + 4x - y = 7​ 1) ( PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } )

{4X2 - 2Y2 + 6XY + X - 3Y = 6 (2)

b. { x2 + y2 - xy + 3x - 2y = 2 (3) [ PHƯƠNG TRÌNH (1) VÀ (2) LÀ 1 ngoặc { } ]

{2x2 - 3y2 + 3xy + x + 6y = 9 (4)

c. { 3x2 - y2 - 4xy + 7x - y - 6 = 0 (5) ( PHƯƠNG TRÌNH (5) VÀ (6) LÀ 1 )

{ 2x2 + y2 + 3x - 2y = 4 (6)

22 tháng 2 2018

ko hiểu

28 tháng 6 2019

\(x^2-4xy+5y^2=16\)

\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+y^2=16\)

\(\Leftrightarrow\left(x-2y\right)^2+y^2=16=4^2+0^2=0^2+4^2\)

\(TH1:\left\{{}\begin{matrix}\left(x-2y\right)^2=4^2\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4;x=-4\\y=0\end{matrix}\right.\)

\(TH2:\left\{{}\begin{matrix}\left(x-2y\right)^2=0\\y^2=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=2\end{matrix}\right.\left(h\right)\left\{{}\begin{matrix}x=-4\\y=-2\end{matrix}\right.\)

28 tháng 6 2019

\(xy+3x-y=38\)

\(\Leftrightarrow\left(xy-y\right)+\left(3x-3\right)=35\)

\(\Leftrightarrow y\left(x-1\right)+3\left(x-1\right)=35\)

\(\Leftrightarrow\left(x-1\right)\left(y+3\right)=35\)

Làm nốt

Bạn tách ra đi bạn

29 tháng 7 2019

a,\(2x^2-8x+y^2+2y+9=0\)

\(\Rightarrow2\left(x^2-4x+4\right)+\left(y^2+2y+1\right)=0\)

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2=0\) 

Mà \(2\left(x-2\right)^2\ge0\forall x\)\(\left(y+1\right)^2\ge0\forall y\) 

\(\Rightarrow2\left(x-2\right)^2+\left(y+1\right)^2\ge0\forall x;y\)

Dấu "=" xảy ra<=> \(\hept{\begin{cases}2\left(x-2\right)^2=0\\\left(y+1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\end{cases}}}\)

Vậy x=2;y=-1

2 tháng 7 2017

\(A=x^2+3xy+6x+5y^2+7y-2\)

\(=\left[x^2+2x\left(3+\dfrac{3}{2}y\right)+\left(3+\dfrac{3}{2}y\right)^2\right]+5y^2+7y-2-\left(3+\dfrac{3}{2}y\right)^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+5y^2+7y-2-9-9y-\dfrac{9}{4}y^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}y^2-2y-11\)

\(=\left(x+3+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\left(y^2-\dfrac{8}{11}y+\dfrac{16}{121}\right)-\dfrac{125}{11}\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}\left(x-\dfrac{4}{11}\right)^2-\dfrac{125}{11}\ge\dfrac{-125}{11}\)Vậy \(Min_A=\dfrac{-125}{11}\) khi \(\left[{}\begin{matrix}x+3+\dfrac{3}{2}y=0\\x-\dfrac{4}{11}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{74}{33}\\x=\dfrac{4}{11}\end{matrix}\right.\)

Biết số nhọ nhưng vẫn làm tiếp:)

2 tháng 7 2017

\(2,x^4+3x^2+2x+2=\left(x^4+2x^2+1\right)+\left(x^2+2x+1\right)=\left(x^2+1\right)^2+\left(x+1\right)^2>0\left(đpcm\right)\)

\(b,x^2+y^2+z^2+xy+yz+zx\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(y^2+2yz+z^2\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\ge0\)

Đúng với mọi x , y ,z

c,\(x^2+y^2+xy+x+y+1\ge0\)

\(\Leftrightarrow2\left(x^2+y^2+xy+y+x+1\right)\ge0\)

\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)\ge0\)

\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\ge0\)

Đúng với mọi x , y

11 tháng 7 2017

B1:

a) \(x^3-2x^2+x-2\)

= \(x^2\left(x-2\right)+\left(x-2\right)=\left(x-2\right)\left(x^2+1\right)\)

b) \(2x^3+3x^2-3x-2\)

= \(2x^3-2x^2+5x^2-5x+2x-2\)

= \(2x^2\left(x-1\right)+5x\left(x-1\right)+2\left(x-1\right)\)

= \(\left(x-1\right)\left(2x^2+5x+2\right)\)

= \(\left(x-1\right)\left(2x^2+4x+x+2\right)\)

= \(\left(x-1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]\)

= \(\left(x-1\right)\left(x+2\right)\left(2x+1\right)\)

c) \(5x^2+5y^2-x^2z+2xyz-y^2z-10xy\)

= \(5\left(x^2+2xy+y^2\right)+z\left(x^2+2xy+y^2\right)\)

= \(5\left(x+y\right)^2+z\left(x+y\right)^2\)

= \(\left(x+y\right)^2\left(5+z\right)\)

d) \(x^3-3x^2y+3xy^2-x+y-y^3\)

= \(\left(x-y\right)^3-\left(x-y\right)\)

= \(\left(x-y\right)\left[\left(x-y\right)^2-1\right]\)

= \(\left(x-y\right)\left(x-y-1\right)\left(x-y+1\right)\)

B2:

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\left(2x-5\right)\left(2x+5-2x-7\right)=0\)

\(\left(2x-5\right).\left(-2\right)=0\)

\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)

b) \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)

\(\left(x+3\right)\left(x^2-2x\right)=0\)

\(\left(x+3\right).x.\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\\x=2\end{matrix}\right.\)

c) \(2x^3+3x^2+2x+3=0\)

\(x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\left(2x+3\right)\left(x^2+1\right)=0\)

Ta thấy \(x^2+1>0\) với mọi x

\(\Rightarrow2x+3=0\Rightarrow x=\dfrac{-3}{2}\)

11 tháng 7 2017

Các bạn ơi giúp mình với!!!eoeoeoeoeoeo