Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(x+y+z+xy+yz+zx\le\frac{x^2+1}{2}+\frac{y^2+1}{2}+\frac{z^2+1}{2}+xy+yz+xz=\frac{x^2+y^2+z^2+2xy+2yz+2zx+3}{2}=\frac{\left(x+y+z\right)^2+3}{2}\)\(\Leftrightarrow6\le\frac{\left(x+y+z\right)^2+3}{2}\Leftrightarrow\left(x+y+z\right)^2+3\ge12\Leftrightarrow\left(x+y+z\right)^2\ge9\Leftrightarrow x+y+z\ge3\)
Áp dụng BĐT Bunhiacopxki ta có:
\(3A=\left(1+1+1\right)\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\ge3^2=9\)
\(\Leftrightarrow A\ge3\)
Dấu " = " xảy ra <=> \(x=y=z=1\)
Vậy \(A_{min}=3\Leftrightarrow x=y=z=1\)
3)
e)
b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3
= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1
= (x-3y)2 + (2x -1)2 + (y-1)2 +1
Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0
(2x -1)2 luôn lớn hơn hoặc bằng 0
(y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0
=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0
\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)
\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)
ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)
\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)
Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)
T i c k cho mình 1 cái nha mới bị trừ 50 đ
a/ \(x^2-6x+10=x^2-2.x.3+3^2+1=\left(x-3\right)^2+1\)
Với mọi x ta có :
\(\left(x-3\right)^2\ge0\)
\(\Leftrightarrow\left(x-3\right)^2+1>0\)
\(\Leftrightarrow x^2-6x+10>0\)
b/ \(x^2-4x+7=x^2-2.x.2+2^2+3=\left(x-2\right)^2+3\)
Với mọi x ta có :
\(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2+3\ge3\)
\(\Leftrightarrow x^2-4x+7\ge3\left(đpcm\right)\)
c/ \(x^2+x+1=x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Với mọi x ta có :
\(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Leftrightarrow x^2+x+1>0\left(đpcm\right)\)
d/ \(x^2+y^2+4x-6y+15=\left(x^2+4x+2^2\right)+\left(y^2-6y+3^2\right)+2=\left(x+2\right)^2+\left(y-3\right)^2+2\)
Với mọi x,y ta có :
\(\left\{{}\begin{matrix}\left(x+2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2\ge0\)
\(\Leftrightarrow\left(x+2\right)^2+\left(y-3\right)^2+2\ge0\)
\(\Leftrightarrow x^2+y^2+4x-6y+15>0\left(đpcm\right)\)
2/ Ta có :
\(\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\left(đpcm\right)\)
3/ \(x^2+y^2=x^2+y^2+2xy-2xy=\left(x+y\right)^2-2xy\)
Mà \(x+y=7;xy=-3\)
\(\Leftrightarrow x^2+y^2=7^2-2.\left(-3\right)=49+6=55\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2xz\end{cases}\Leftrightarrow}2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng từ câu 1) ta có : \(x^4+y^4+z^4=\left(x^2\right)^2+\left(y^2\right)^2+\left(z^2\right)^2\ge\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
3) Bạn cần sửa lại một chút thành \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1=\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)=x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)
1) Ta có : \(\hept{\begin{cases}x^2+y^2\ge2xy\left(1\right)\\y^2+z^2\ge2yz\left(2\right)\\z^2+x^2\ge2zx\left(3\right)\end{cases}}\)
Cộng (1) , (2) , (3) theo vế được ; \(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)
2) Áp dụng câu trên được : \(x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\)
Tương tự : \(\left(xy\right)^2+\left(yz\right)^2+\left(zx\right)^2\ge xy^2z+yz^2x+zx^2y=xyz\left(x+y+z\right)\)
Vậy \(x^4+y^4+z^4\ge xyz\left(x+y+z\right)\)
3) Đề đúng phải là : \(x^4-2x^3+2x^2-2x+1\ge0\)
Ta có : \(x^4-2x^3+2x^2-2x+1\ge0\left(1\right)\Leftrightarrow\left(x^4-2x^3+x^2\right)+\left(x^2-2x+1\right)\ge0\Leftrightarrow x^2\left(x-1\right)^2+\left(x-1\right)^2\ge0\)(Luôn đúng)
Do đó (1) được chứng minh.
2.
Ta có hằng đẳng thức : \(\left(a-b\right)^2=a^2-2ab+b^2\left(1\right)\)
Lại có \(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\left(a+b\right)^2-4ab=a^2+2ab-4ab+b^2\)
\(\Leftrightarrow\left(a+b\right)^2-4ab=a^2-2ab+b^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a-b\right)^2=\left(a+b\right)^2-4ab\)( đpcm )
3.
Ta có hằng đẳng thức \(\left(x+y\right)^2=x^2+2xy+y^2\)
\(\Rightarrow x^2+y^2=\left(x+y\right)^2-2xy\)
Thay \(x+y=7\)và \(xy=-3\)vào ta được :
\(x^2+y^2=7^2-2\left(-3\right)\)
\(\Leftrightarrow x^2+y^2=49+6=55\)
Vậy ...
1.
a) Đặt \(A=x^2-6x+10\)
\(A=\left(x^2-6x+9\right)+1\)
\(A=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow A\ge1>0\)
Vậy ...
b) Đặt \(B=x^2-4x+7\)
\(B=\left(x^2-4x+4\right)+3\)
\(B=\left(x-2\right)^2+3\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow B\ge3\)
Vậy ...
\(A=x^2+3xy+6x+5y^2+7y-2\)
\(=\left[x^2+2x\left(3+\dfrac{3}{2}y\right)+\left(3+\dfrac{3}{2}y\right)^2\right]+5y^2+7y-2-\left(3+\dfrac{3}{2}y\right)^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+5y^2+7y-2-9-9y-\dfrac{9}{4}y^2\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}y^2-2y-11\)
\(=\left(x+3+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\left(y^2-\dfrac{8}{11}y+\dfrac{16}{121}\right)-\dfrac{125}{11}\)\(=\left(x+3+\dfrac{3}{2}y\right)^2+\dfrac{11}{4}\left(x-\dfrac{4}{11}\right)^2-\dfrac{125}{11}\ge\dfrac{-125}{11}\)Vậy \(Min_A=\dfrac{-125}{11}\) khi \(\left[{}\begin{matrix}x+3+\dfrac{3}{2}y=0\\x-\dfrac{4}{11}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{74}{33}\\x=\dfrac{4}{11}\end{matrix}\right.\)
Biết số nhọ nhưng vẫn làm tiếp:)
\(2,x^4+3x^2+2x+2=\left(x^4+2x^2+1\right)+\left(x^2+2x+1\right)=\left(x^2+1\right)^2+\left(x+1\right)^2>0\left(đpcm\right)\)
\(b,x^2+y^2+z^2+xy+yz+zx\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+z^2+xy+yz+zx\right)\ge0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2xz+z^2\right)+\left(y^2+2yz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+z\right)^2+\left(y+z\right)^2\ge0\)
Đúng với mọi x , y ,z
c,\(x^2+y^2+xy+x+y+1\ge0\)
\(\Leftrightarrow2\left(x^2+y^2+xy+y+x+1\right)\ge0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)\ge0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\ge0\)
Đúng với mọi x , y