Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phân tích trường hợp HĐT
Xét trường hợp :
123x0awf10
P/s: Áp dụng mà làm
Gọi \(A=5x^2+2y^2+14+4xy-4y+8x\)
\(=\left(4x^2+4xy+y^2\right)+\left(4x+2y\right)+1+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(2x+y\right)^2+2\left(2x+y\right)+1+\left(x+2\right)^2+\left(y-3\right)^2\)
\(=\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2\)
Ta thấy các hạng tử của A đều \(\ge0\) nên \(A\ge0\forall x;y\) mà đề lại cho \(A\le0\) \(\Rightarrow A=0\)
\(\Leftrightarrow\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2=0\)\(\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)
(x-2y-2)2+(y-6)2 =39-2A
A=< 39/2, max A là 39/2 khi x =14 và y =6
\(x^2+3y^2=4xy\Leftrightarrow x^2-xy+3y^2-3xy=0\)
\(\Leftrightarrow x\left(x-y\right)-3y\left(x-y\right)=0\Leftrightarrow\left(x-y\right)\left(x-3y\right)=0\)
Do x>y>0 => x-y>0 => \(x-3y=0\Leftrightarrow x=3y\) Thay vào A
\(\Rightarrow A=\frac{2.3y+5y}{3y-2y}=\frac{11y}{y}=11\)
\(3x^2+y^2+4xy-8x-2y=0\)
\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)
\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)
\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)
\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)
Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn
Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)