Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2+y^2+4xy-8x-2y=0\)
\(\Leftrightarrow4x^2+4xy+y^2-4x-2y+1-x^2-4x-4=-3\)
\(\Leftrightarrow\left(2x+y-1\right)^2-\left(x+2\right)^2=-3\)
\(\Leftrightarrow\left(2x+y-1-x-2\right)\left(2x+y-1+x+2\right)=-3\)
\(\Leftrightarrow\left(x+y-3\right)\left(3x+y+1\right)=-3\)
Do \(x,y\in Z\Rightarrow x+y-3;3x+y+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Bạn lập bảng xét ước rồi tìm ra x,y thỏa mãn
Vậy \(\left(x,y\right)=\left(0,2\right);\left(-4,8\right);\left(-4;10\right);\left(0,0\right)\)
\(A=5x^2+2y^2-4xy-8x-4y+2031\)
\(\Rightarrow5A=25x^2+10y^2-20xy-32x-16y+10155\)
\(=\left(25x^2-20xy+4y^2\right)+6\left(y^2-2\cdot\frac{8}{9}+\frac{64}{81}\right)+\left(10155-6\cdot\frac{64}{81}\right)\)
\(=\left(5x-2y\right)^2+6\left(y-\frac{8}{9}\right)^2+\left(10155-6\cdot\frac{64}{81}\right)\ge10155-6\cdot\frac{64}{81}\)
\(\Rightarrow A\ge2031-\frac{6}{5}\cdot\frac{64}{81}\)
Dấu "=" xảy ra tại \(y=\frac{8}{9};x=\frac{16}{45}\)
PS:Is that true ???
a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)
với mọi x,y
b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)
\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)
Bạn xem lại đề
2 câu trên đã có kết quả, mình giải quyết câu c nhá
5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0
5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3
=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1
=(2x + 1)2 + (y - 1)2 + (3y - x)2 + 1
(2x + 1)2 \(\ge\)0 với mọi x
(y - 1)2 \(\ge\) 0 với mọi y
(3y - x)2\(\ge\) 0 với mọi x và y
1>0
=> ĐPCM
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm
\(\frac{x^2+3xy+2y^2}{5x^2+4xy-y^2}-\frac{x^2-5xy+4y^2}{-2x^2+4xy-2y^2}\)
\(=\frac{x+2y}{5x-y}-\left[-\frac{x-4y}{2\left(x-y\right)}\right]\)
\(=\frac{x+2y}{5x-y}+\frac{x-4y}{2\left(x-y\right)}\)
\(=\frac{\left(x+2y\right).2\left(x-y\right)}{\left(5x-y\right).2\left(x-y\right)}+\frac{\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)
\(=\frac{\left(x+2y\right).2\left(x-y\right)+\left(x-4y\right).\left(5x-y\right)}{2\left(x-y\right).\left(5x-y\right)}\)
\(=\frac{7x^2-19xy}{2\left(x-y\right).\left(5x-y\right)}\)
Phân tích trường hợp HĐT
Xét trường hợp :
123x0awf10
P/s: Áp dụng mà làm
Gọi \(A=5x^2+2y^2+14+4xy-4y+8x\)
\(=\left(4x^2+4xy+y^2\right)+\left(4x+2y\right)+1+\left(x^2+4x+4\right)+\left(y^2-6y+9\right)\)
\(=\left(2x+y\right)^2+2\left(2x+y\right)+1+\left(x+2\right)^2+\left(y-3\right)^2\)
\(=\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2\)
Ta thấy các hạng tử của A đều \(\ge0\) nên \(A\ge0\forall x;y\) mà đề lại cho \(A\le0\) \(\Rightarrow A=0\)
\(\Leftrightarrow\left(2x+y+1\right)^2+\left(x+2\right)^2+\left(y-3\right)^2=0\)\(\Rightarrow\hept{\begin{cases}x=-2\\y=3\end{cases}}\)