Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét x = 0 thì: 10 0 + 48 = y 2 ⇔ y 2 = 49 = 7 2 => y = 7
Xét với x ≠ 0 thì 10 x có chữ số tận cùng là 0, Do đó 10 x + 48 có tận cùng là 8
Mà y 2 là số chính phương nên không thể có tận cùng là 8
Vậy x = 0, y = 7
Lời giải:
Ta thấy:
$10x\equiv 0\pmod 5$
$288\equiv 3\pmod 5$
$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)
Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.
Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.