K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 9 2020

Lời giải:

Ta thấy:

$10x\equiv 0\pmod 5$

$288\equiv 3\pmod 5$

$\Rightarrow y^2\equiv 3\pmod 5$ (vô lý)

Do ta biết rằng một số chính phương khi chia cho $5$ chỉ có thể có dư là $0,1,4$.

Như vậy, không tồn tại số tự nhiên $x,y$ thỏa mãn điều kiện đề bài.

27 tháng 9 2018

Xét x = 0 thì:  10 0 + 48 = y 2 ⇔ y 2 = 49 = 7 2 => y = 7

Xét với x ≠ 0 thì 10 x  có chữ số tận cùng là 0, Do đó  10 x + 48 có tận cùng là 8

Mà y 2 là số chính phương nên không thể có tận cùng là 8

 Vậy x = 0, y = 7