K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2017

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

\(\Rightarrow\sqrt{36\left(x-1\right)}-\sqrt{9\left(x-1\right)}-\sqrt{4\left(x-1\right)}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{36}\sqrt{x-1}-\sqrt{9}\sqrt{x-1}-\sqrt{4}\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}=16-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{x-1}=16\)

\(\Leftrightarrow2\sqrt{x-1}=16\)

\(\Leftrightarrow\sqrt{x-1}=8\)

\(\Leftrightarrow x-1=64\)

\(\Leftrightarrow x=64+1\)

\(\Leftrightarrow x=65\)

Vậy \(x=65\)

2 tháng 6 2017

\(\sqrt{36x-36}-\sqrt{9x-9}-\sqrt{4x-4}=16-\sqrt{x-1}\)

<=> \(6\sqrt{x-1}-3\sqrt{x-1}-2\sqrt{x-1}+\sqrt{x-1}=16\)

<=> \(\sqrt{x-1}\left(6-3-2+1\right)=16\)

<=> \(\sqrt{x-1}=8\)

<=> \(x-1=64\)

<=> \(x=65\)

Vậy nghiệm của PT: S= \(\left\{65\right\}\)

P/s: Sai đừng trách mk nha!

23 tháng 7 2020

a.

\(\sqrt{x^2-4}=\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x-2}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)}.\sqrt{\left(x+2\right)}-\sqrt{x-2}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Vậy x=2 hoặc x=-1

b)

\(\Leftrightarrow\sqrt{x-1}+5\sqrt{4.\left(x-1\right)}-\sqrt{9.\left(x-1\right)}< 4\)

\(\Leftrightarrow\sqrt{x-1}+10\sqrt{x-1}-3\sqrt{x-1}< 4\)

\(\Leftrightarrow\left(1+10-3\right)\sqrt{x-1}< 4\)

\(\Leftrightarrow8\sqrt{x-1}< 4\)

\(\Leftrightarrow\sqrt{x-1}< \frac{1}{2}\)

\(\Leftrightarrow x-1< \frac{1}{4}\)

\(\Leftrightarrow x< \frac{5}{4}\)

Vậy...

15 tháng 10 2017

\(đk:x\ge1\)

\(pt\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}+4\sqrt{x-1}=12\)

\(\Leftrightarrow6\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\Leftrightarrow x=1+4=5\left(N\right)\)

9 tháng 10 2017

Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương

Chỉ trình bày lời giải, tự tìm điều kiện nha :v

d) \(\sqrt{x+2\sqrt{x-1}}=2\)

\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-1}+1=2\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Rightarrow x-1=1\Leftrightarrow x=2\)

f) \(\sqrt{x+4\sqrt{x-4}}=2\)

\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)

\(\Leftrightarrow\sqrt{x-4}+2=2\)

\(\Leftrightarrow\sqrt{x-4}=0\)

\(\Rightarrow x-4=0\Leftrightarrow x=4\)

19 tháng 8 2018

Bài 4 : Tìm x biết:

a, 4x2 - 49 = 0

\(\Leftrightarrow\) (2x)2 - 72 = 0

\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b, x2 + 36 = 12x

\(\Leftrightarrow\) x2 + 36 - 12x = 0

\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0

\(\Leftrightarrow\) (x - 6)2 = 0

\(\Leftrightarrow\) x = 6

19 tháng 8 2018

e, (x - 2)2 - 16 = 0

\(\Leftrightarrow\) (x - 2)2 - 42 = 0

\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0

\(\Leftrightarrow\) (x - 6)(x + 2) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

f, x2 - 5x -14 = 0

\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0

\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0

\(\Leftrightarrow\) (x + 2)(x - 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

7 tháng 7 2018

mk làm luôn

a)\(A=\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right).\)

=\(\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}-1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}\)

=\(\frac{\left(3x+3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right).3}\)

=\(\frac{3x+3\sqrt{x}-1}{9\sqrt{x}-3}\)

=