Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài a,b,c,e,g,i thì đặt điều kiện rồi bình phương 2 vế rồi giải, bài j chuyển vế rồi bình phương
Chỉ trình bày lời giải, tự tìm điều kiện nha :v
d) \(\sqrt{x+2\sqrt{x-1}}=2\)
\(\Leftrightarrow\sqrt{x-1+2\sqrt{x-1}+1}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-1}+1\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-1}+1=2\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Rightarrow x-1=1\Leftrightarrow x=2\)
f) \(\sqrt{x+4\sqrt{x-4}}=2\)
\(\Leftrightarrow\sqrt{x-4+2.2\sqrt{x-4}+4}=2\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-4}+2\right)^2}=2\)
\(\Leftrightarrow\sqrt{x-4}+2=2\)
\(\Leftrightarrow\sqrt{x-4}=0\)
\(\Rightarrow x-4=0\Leftrightarrow x=4\)
đk: x > = 0
\(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
<=> \(x-2\sqrt{x}+1-x+4\sqrt{x}=11\)
<=> \(2\sqrt{x}=11\)
<=> \(\sqrt{x}=\frac{11}{2}\)
<=> x = 121/4
b) 4x2 - 4 = 0
<=> 4(x - 1)(x + 1) = 0
<=> x = 1 hoặc x = -1
Trả lời:
a, \(\left(\sqrt{x}-1\right)^2+\sqrt{x}\left(4-\sqrt{x}\right)=11\)
\(\Leftrightarrow\left(\sqrt{x}\right)^2-2\sqrt{x}+1+4\sqrt{x}-\left(\sqrt{x}\right)^2=11\)
\(\Leftrightarrow2\sqrt{x}+1=11\)
\(\Leftrightarrow2\sqrt{x}=10\)
\(\Leftrightarrow\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=\sqrt{25}\)
\(\Rightarrow x=25\)
Vậy x = 25
b, \(4x^2-4=0\)
\(\Leftrightarrow\)\(4\left(x^2-1\right)=0\)
\(\Leftrightarrow4\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)
Vậy x = 1; x = -1
1)
ĐK: \(x\geq 2\)
\(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
\(\Leftrightarrow \sqrt{x-2}-3\sqrt{(x-2)(x+2)}=0\)
\(\Leftrightarrow \sqrt{x-2}(1-3\sqrt{x+2})=0\)
\(\Rightarrow \left[\begin{matrix} \sqrt{x-2}=0\\ \sqrt{x+2}=\frac{1}{3}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=2\\ x=\frac{-17}{9}(\text{loại vì x}\geq 2)\end{matrix}\right.\)
Vậy $x=2$ là nghiệm của pt
2) ĐK: \(x\geq 1\)
Ta có: \(x+\sqrt{x-1}=13\)
\(\Leftrightarrow (x-1)+\sqrt{x-1}+\frac{1}{4}=\frac{49}{4}\)
\(\Leftrightarrow (\sqrt{x-1}+\frac{1}{2})^2=\frac{49}{4}\)
Vì \(\sqrt{x-1}+\frac{1}{2}>0\) nên \(\sqrt{x-1}+\frac{1}{2}=\sqrt{\frac{49}{4}}=\frac{7}{2}\)
\(\Rightarrow \sqrt{x-1}=3\)
\(\Rightarrow x=3^2+1=10\) (thỏa mãn)
Vậy.......
a.
\(\sqrt{x^2-4}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)\left(x+2\right)}=\sqrt{x-2}\)
\(\Leftrightarrow\sqrt{\left(x-2\right)}.\sqrt{\left(x+2\right)}-\sqrt{x-2}=0\)
\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
Vậy x=2 hoặc x=-1
b)
\(\Leftrightarrow\sqrt{x-1}+5\sqrt{4.\left(x-1\right)}-\sqrt{9.\left(x-1\right)}< 4\)
\(\Leftrightarrow\sqrt{x-1}+10\sqrt{x-1}-3\sqrt{x-1}< 4\)
\(\Leftrightarrow\left(1+10-3\right)\sqrt{x-1}< 4\)
\(\Leftrightarrow8\sqrt{x-1}< 4\)
\(\Leftrightarrow\sqrt{x-1}< \frac{1}{2}\)
\(\Leftrightarrow x-1< \frac{1}{4}\)
\(\Leftrightarrow x< \frac{5}{4}\)
Vậy...