Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = -3(x2 +3x + 9/4 -9/4) -7
B = -3(x+3/2)2 -7 +27/4
GTLN B = -1/4
B = -3(x2 +3x + 9/4 -9/4) -7
B = -3(x+3/2)2 -7 +27/4
GTLN B = -1/4
=> 72 - 20x - 36x - 84 = 30x - 240 - 6x + 84
=> (72 - 84 ) - (20x + 36x ) = (30x - 6x ) - 240 + 84
=> -12 - 56x = 24x - 156
=> -12 + 156 = 24x + 56x
=> 144 = 80x
=> x = 144 : 80
=> x = 9/5
\(\left(x-3\right)^2+\frac{1}{2}=\left(x-1\right)\cdot\left(x+1\right)\)
\(x^2-6x+9+\frac{1}{2}=x^2-1\)
\(x^2-6x+9\frac{1}{2}=x^2-1\)
\(x^2-6x-x^2=-1-9\frac{1}{2}\)
\(\left(x^2-x^2\right)-6x=-10\frac{1}{2}\)
\(-6x=-10\frac{1}{2}\)
\(x=-10\frac{1}{2}:\left(-6\right)\)
\(x=1\frac{3}{4}\)
(x-3)^2 +1/2= (x-1)*(x+1)
\(\Leftrightarrow x^2-6x+\frac{19}{2}=x^2-1\)
\(\Leftrightarrow x^2-6x+\frac{19}{2}-x^2+1=0\)
\(\Leftrightarrow\left(x^2-x^2\right)+\frac{19}{2}+1-6x=0\)
\(\Leftrightarrow\frac{21}{2}-6x=0\)
\(\Leftrightarrow\frac{21}{2}-\frac{12x}{2}=0\)
\(\Leftrightarrow-\frac{3\left(4x-7\right)}{2}=0\)
\(\Leftrightarrow3\left(4x-7\right)=0\)
\(\Leftrightarrow4x-7=0\)
\(\Leftrightarrow4x=7\)
\(\Leftrightarrow x=\frac{7}{4}\)
Giả sử (x;y) là cặp số nguyên dương cần tìm. Khi đó ta có:
(xy-1) I (x^3+x) => (xy-1) I x.(x^2+1) (1)
Do (x; xy-1) =1 ( Thật vậy: gọi (x;xy-1) =d => d I x => d I xy => d I 1).
Nên từ (1) ta có:
(xy-1) I (x^2+1)
=> (xy-1) I (x^2+1+xy -1) => (xy-1) I (x^2+xy) => (xy-1) I x.(x+y) => (xy-1) I (x+y)
Điều đó có nghĩa là tồn tại z ∈ N* sao cho:
x+y = z(xy-1) <=> x+y+z =xyz (2)
[Đây lại có vẻ là 1 bài toán khác]
Do vai trò bình đẳng nên ta giả sử: x ≥ y ≥ z.
Từ (2) ta có: x+y+z ≤ 3x => 3x ≥ xyz => 3 ≥ yz ≥ z^2 => z=1
=> 3 ≥ y => y ∈ {1;2;3}
Nếu y=1: x+2 =x (loại)
Nếu y=2: (2) trở thành x+3 =2x => x=3
Nếu y=3: x+4 = 3x => x=2 (loại vì ta có x≥y)
Vậy khi x ≥ y ≥ z thì (2) có 1 nghiệm (x;y;z) là (3;2;1)
Hoán vị vòng quanh được 6 nghiệm là: .....[bạn tự viết nhé]
Vậy bài toán đã cho có 6 nghiệm (x;y) là : .... [viết y chang nhưng bỏ z đi]
Xét x= 1 => , từ đó có y=2∨y=3
Xét y=1 => , từ đó có x=2∨x=3
Xét x≥2 hoặc y≥2 . Ta có : (x,xy−1)=1. Do đó :
xy−1|x3+x⇒xy−1|x2+1⇒xy−1|x+y
=> x+y≥xy−1⇒(x−1)(y−1)≤2. Từ đó có
=> x = y = 2 ( loại ) hoặc x = 2 ; y = 3 hoặc x = 3 ; y= 2
Vậy các cặp số ( x;y ) thỏa mãn là (1;2),(2;1),(1;3),(3;1),(2;3),(3;2)
2x(x - 5 ) - x(3+2x) = 26
2x2-10x-3x+6x=26
2x2-7x=26
x.(2x-7)=26
Chỗ đây bn tự liêt kê ra nha
\(\Leftrightarrow2x^2-10x-3x-2x^2=26.\)
\(\Leftrightarrow-13x=26\Rightarrow x=-2\)
CHI GIẢI CHO NÈ
A=\(\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}=\frac{x-1}{x-3}\)
de A <1 \(\Leftrightarrow\frac{x-1}{x-3}< 1\Leftrightarrow\frac{x-1}{x-3}-1< 0\)
\(\Leftrightarrow\frac{2}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)