Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\left|x-2021\right|\ge0\forall x,\left|y-2022\right|\ge0\forall y\\ =>\left|x-2021\right|+\left|y-2022\right|\ge0\)
Mà theo đề : \(\left|x-2021\right|+\left|y-2022\right|\le0\)
=> \(\left\{{}\begin{matrix}x-2021=0\\y-2022=0\end{matrix}\right.=>\left(x;y\right)=\left(2021;2022\right)\)
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)
\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)
\(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left|\left(x-2\right)^{2019}\right|\ge0\\\left(y-1\right)^{2020}\ge0\end{matrix}\right.\forall x,y.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\ge0\) \(\forall x,y.\)
Mà \(\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}\le0.\)
\(\Rightarrow\left|\left(x-2\right)^{2019}\right|+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left(x-2\right)^{2019}+\left(y-1\right)^{2020}=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2019}=0\\\left(y-1\right)^{2020}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0+2\\y=0+1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{2;1\right\}.\)
Chúc bạn học tốt!