K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2020

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

22 tháng 3 2022

x thuộc 2019 ; 2020

y=2021

NV
23 tháng 3 2021

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

(Nó có hơi dài dòng)

Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =

(x-z)^3= (2020 - 2022)^3 = -8

8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.

Vì (x-z)^3 = -8

 8(x-y)^2.(y-z) = -8

==> (x-z)^3 = 8(x-y)^2.(y-z)

16 tháng 5 2022

Bạn viết ra vở xong chụp mik đc ko 

Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)

Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)

Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)

Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)

11 tháng 9 2021

Bạn tham khảo hình ảnh :

undefined

Cre : lazi.vn

Hok tốt

11 tháng 9 2021

bạn tham khảo:

undefined

nguồn: lazi.vn

~HT~

DT
2 tháng 10 2023

Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0

=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0 

Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1

Thay vào bt S :

S = ( 2 - 1)^2019 + (2-1)^2019

= 1^2019 + 1^2019 = 2

2 tháng 10 2023

em cảm ơn