Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ;
( x + 5)2 = 0 ;
(y + 3)2 = 0
vậy x = - 5 ; y = -3; z = 8
Tìm x, y, z biết rằng: 2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
Giải
2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0
(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0
( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0
( x + y + z)2 = 0 ; ( x + 5)2 = 0 ; (y + 3)2 = 0
x = - 5 ; y = -3; z = 8
1. a) Ta có: 2x2 - x + 1 = x(2x + 1) - 2x + 1 = x(2x + 1) - (2x + 1) + 2 = (x - 1)(2x + 1) + 2
Do (x - 1)(2x + 1) \(⋮\)2x + 1
=> 2 \(⋮\)2x + 1
=> 2x + 1 \(\in\)Ư(2) = {1; -1; 2; -2}
Do : 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
+) 2x + 1 = 1 => 2x = 0 => x = 0
+) 2x + 1 = -1 => 2x = -2 => x = -1
b) 2x + y + 2xy - 3 = 0
=> 2x(1 + y) + (1 + y) = 4
=> (2x + 1)(1 + y) = 4
=> 2x + 1;1 + y \(\in\)Ư(4) = {1; -1;2 ;-2; 4; -4}
Do: 2x + 1 là số lẻ => 2x + 1 \(\in\){1; -1}
=> 1 + y \(\in\){4; -4}
Lập bảng :
2x + 1 | 1 | -1 |
1 + y | 4 | -4 |
x | 0 | -1 |
y | 3 | -5 |
Vậy ....
c) x2 + 2xy = 0
=> x(x + 2y) = 0
=> \(\hept{\begin{cases}x=0\\x+2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\2y=0\end{cases}}\)
=> \(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy x = y = 0
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
a )x2+2y2-2xy+2x-4y+2=0
<=>x2-2x(y-1)+y2-2y+1+y2-2y+1=0
<=>x2-2x(y-1)+(y-1)2+(y-1)2=0
<=>(x-y+1)2+(y-1)2=0
<=>x-y+1=0 va y-1=0
<=>x=y-1 y=1
<=>x=1-1=0 y=1
a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)
\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)
\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )
b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )
c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )
\(x^2-2xy+y^2+x^2-10x+25=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\x-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=5\\x=5\end{cases}}\)
vậy \(y=5\) va\(x=5\)
\(2x^2+y^2-2xy-10x+25=0\)
\(\Leftrightarrow(x^2-2xy+y^2)+\left(x^2-10x+25\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-5\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}x-5=0\Rightarrow x=5\\x-y=5\Rightarrow y=5\end{cases}}\)