K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

a) Luỹ thừa các số có tận cùng là chữ số 5 sẽ tận cùng bằng 5

Do đó 2.5y sẽ tận cùng bằng 0 => 35x + 9 sẽ tận cùng bằng chữ số 0 => 35  tận cùng bằng chữ số 1 => x= 0 => 2.5 = 10 => y=1

Vậy x = 0, y=1

21 tháng 8 2016

Từ \(x^2+2xy+7\left(x+y\right)+7y^2+10=0\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+6y^2+10=0\) ( * )

\(S=x+y+1\Rightarrow x+y=S-1\)

( * ) \(\left(S-1\right)^2+7.\left(S-1\right)+6y^2+10=0\)

\(\Rightarrow S^2+5S+4=-6y^2\le0\) với mọi y \(\Rightarrow S^2+5S+4\le0\)

=> (S + 4)(S + 1)   0 => S + 4 và S + 1 trái dấu

Giải 2 trường hợp => -4  S  -1

=> GTNN của S bằng -4 khi y = 0 và x = -5

GTLN của S bằng -1 khi y = 0 và x = -2

14 tháng 6 2017

tìm x và y như thế nào Võ Đông Anh Tuấn

2 tháng 9 2020

Sai đề: Sửa \(x-y-x=78\)thành \(x-y+z=78\)

Từ \(\frac{x}{y}=\frac{10}{9}\)\(\Rightarrow\frac{x}{10}=\frac{y}{9}\)(1)

Từ \(\frac{y}{z}=\frac{3}{4}\)\(\Rightarrow\frac{y}{3}=\frac{z}{4}\)\(\Rightarrow\frac{y}{3.3}=\frac{z}{4.3}\)\(\Rightarrow\frac{y}{9}=\frac{z}{12}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)

\(\Rightarrow x=6.10=60\)\(y=6.9=54\)\(z=12.6=72\)

Vậy \(x=60\)\(y=54\)\(z=72\)

2 tháng 9 2020

Sửa : \(x-y-z=78\)

Theo bài ra ta có : 

\(\frac{x}{y}=\frac{10}{9}\Leftrightarrow\frac{x}{10}=\frac{y}{9}\)(*)

\(\frac{y}{z}=\frac{3}{4}\Leftrightarrow\frac{y}{3}=\frac{z}{4}\)(**)

Lại có : \(\frac{x}{30}=\frac{y}{27}\)(***)

\(\frac{y}{27}=\frac{z}{36}\)(****) 

Từ (*) ; (**) ; (***) ; (****) =)) \(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{30}=\frac{y}{27}=\frac{z}{36}=\frac{x-y-z}{30-27-36}=\frac{78}{-33}\)

Tự thay ... 

21 tháng 8 2016

Ta có : \(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{y}{5}\)

Quy đòng : \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

  \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)

\(\Leftrightarrow\begin{cases}\frac{x}{8}=1\Rightarrow x=1.8=8\\\frac{y}{12}=1\Rightarrow y=1.12=12\\\frac{z}{15}=1\Rightarrow z=1.15=15\end{cases}\)

Vậy x = 8 ; y = 12 ; z = 15

21 tháng 8 2016

\(\frac{x}{2}=\frac{y}{3};\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)

x + y + z = 35 => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x+y+z}{8+12+15}=\frac{35}{35}=1\)

=> x = 1 . 8 = 8

y = 1 . 12 = 12

z = 1 . 15 = 15

=> tự KL 

5 tháng 9 2018

4xy

1/3

5 tháng 9 2018

\(x+y=4xy\Rightarrow4x-1=\frac{x}{y}=x+y=4xy\Rightarrow3x-1=y\)

\(\Rightarrow4x\left(3x-1\right)=4x-1\Rightarrow12x^2-8x+1=0\Rightarrow\left(4x+1\right)^2-4x^2=0\Rightarrow\left(4x+1-2x\right)\left(4x+1+2x\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(6x+1\right)=0\Rightarrow\orbr{\begin{cases}2x+1=0\\6x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=-\frac{1}{6}\end{cases}\Rightarrow}\orbr{\begin{cases}y=-\frac{5}{2}\\y=-\frac{3}{2}\end{cases}}}\)

23 tháng 10 2016

a) Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{y-x}{3-2}=\frac{14}{1}=14\)

=> \(\begin{cases}x=28\\y=42\end{cases}\)

b) Từ 2x = 7y => \(\frac{2x}{14}=\frac{7y}{14}\Rightarrow\frac{x}{7}=\frac{y}{2}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{7}=\frac{y}{2}=\frac{x+y}{7+2}=\frac{36}{9}=4\)

=> \(\begin{cases}x=28\\y=8\end{cases}\)

c) Từ \(\frac{x}{y}=\frac{3}{7}\Rightarrow\frac{x}{7}=\frac{y}{3}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{x}{7}=\frac{y}{3}=\frac{y-x}{3-7}=\frac{20}{-4}=-5\)

=> \(\begin{cases}x=-35\\y=-15\end{cases}\)

d) Đặt \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\begin{cases}x=2k\\y=3k\end{cases}\)

Vì xy = 24 => 2k.3k = 24 => 6k2 = 24 => k2 = 4 => k = \(\pm\) 2

Với k = 2 => \(\begin{cases}x=4\\y=6\end{cases}\)

Với k = -2 => \(\begin{cases}x=-4\\y=-6\end{cases}\)

23 tháng 10 2016

mọi người làm ơn giúp mk vớibucminh

31 tháng 8 2015

\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)

\(\frac{x}{3}=2\Rightarrow x=6\)

\(\frac{y}{8}=2\Rightarrow y=16\)

\(\frac{z}{5}=2\Rightarrow z=10\)

 

2 tháng 9 2015

bài này dễ mà, áp dụng  tính chất của dãy tỉ số bằng nhau!