K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

x^3+3x^2+y^3+5y^2-(x^3+y^3)=0

3x^2+5y^2=0

x=0 và y=0

Lớp 8 nên sử dụng hằng đẳng thức

(=) X3 +3x2 +y3+5y2-x3-y3=0

(

6 tháng 9 2016

a/ PT <=> x + 27 = y(x -3)

<=> \(\frac{27+x}{x-3}=y\)

<=> \(1+\frac{30}{x-3}=\:y\)

Vì y > 10 đồng thời x -3 phải là ước của 30 nên có nghiệm (x,y) = (9, 6; 13, 4; 18, 3; 33, 2)

6 tháng 9 2016

b/ x+ 27 = y2

<=> 27 = (y - x)(y + x)

Tới đây thì đơn giản rồi bạn làm tiếp đi

16 tháng 4 2016

Ta có a/(a+b+c)<a/(a+b)<a+c/a+b+c ( Cái này là vì a/a+b <1)

Tương tự vậy với mấy cái kia cx thế cộng theo vế là ra nha bạn 

Có ai giải rõ hơn k z ???

8 tháng 10 2019

a)\(x^2-2xy+y^2+1=\left(x+y\right)^2+1\ge1>0\)

b)\(x-x^2-1=-\left(x^2-x+\frac{1}{4}\right)^2-\frac{3}{4}\le-\frac{3}{4}< 0\)

c)\(9x^2+12x+10=\left(9x^2+12x+4\right)+6=\left(3x+2\right)^2+6\ge6>0\)

d)\(3x^2-x+1=2x^2+\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=2x^2+\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0`\)

25 tháng 1 2018

a, x2 -2xy+3y2 -4y+2=0

\(\Leftrightarrow\)(x2-2xy+y2)+(y2-2y+1)+(y2-2y+1)=0

\(\Leftrightarrow\) (x-y)2+(y-1)2+(y-1)2=0

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\) \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x=y\\y=1\end{matrix}\right.\)\(\Leftrightarrow\) x=y=1