Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x+4\right)\left(4-x\right)=0\Rightarrow\orbr{\begin{cases}3x+4=0\\4-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}3x=\left(-4\right)\Rightarrow x=\frac{-4}{3}\\x=4\end{cases}}\)
\(\Rightarrow x=\left\{\frac{-4}{3};4\right\}\)
b) \(\Rightarrow\orbr{\begin{cases}3\left(x-4\right)=0\\2\left(x-4\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-4=0\end{cases}}\Rightarrow x=4\)
c) => 7x2=0+28
=> x2=28:7
=> x2=4
=> x2=22= (-2)2
=> x={-2;2}
a) x(x - 2) + (x - 2) = 0
=> (x + 1)(x - 2) = 0
=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)
Vậy \(x\in\left\{-1;2\right\}\)
b) \(\frac{2}{3}x\left(x^2-4\right)=0\)
=> x(x2 - 4) = 0
=> \(\orbr{\begin{cases}x=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=2^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) (x + 2)2 - x + 4 = 0
=> x2 + 4x + 4 - x + 4 = 0
=> x2 + 3x + 8 = 0
=> (x2 + 3x + 9/4) + 23/4 = 0
=> (x + 3/2)2 + 23/4 \(\ge\frac{23}{4}>0\)
=> Phương trình vô nghiệm
h) (x + 2)2 = (2x - 1)2
=> (x + 2)2 - (2x - 1)2 = 0
=> (x + 2 - 2x + 1)(x + 2 + 2x - 1) = 0
=> (-x + 3)(3x + 1) = 0
=> \(\orbr{\begin{cases}-x+3=0\\3x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
=> \(x\in\left\{3;-\frac{1}{3}\right\}\)
a) x( x - 2 ) + x - 2 = 0
⇔ x( x - 2 ) + 1( x - 2 ) = 0
⇔ ( x - 2 )( x + 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
b) 2/3x( x2 - 4 ) = 0
⇔ \(\orbr{\begin{cases}\frac{2}{3}x=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
g) ( x + 2 )2 - x + 4 = 0
⇔ x2 + 4x + 4 - x + 4 = 0
⇔ x2 + 3x + 8 = 0 (*)
Ta có : x2 + 3x + 8 = ( x2 + 3x + 9/4 ) + 23/4 = ( x + 3/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x
=> (*) không xảy ra
=> Pt vô nghiệm
h) ( x + 2 )2 = ( 2x - 1 )2
⇔ ( x + 2 )2 - ( 2x - 1 )2 = 0
⇔ [ ( x + 2 ) - ( 2x - 1 ) ][ ( x + 2 ) + ( 2x - 1 ) ] = 0
⇔ ( x + 2 - 2x + 1 )( x + 2 + 2x - 1 ) = 0
⇔ ( 3 - x )( 3x + 1 ) = 0
⇔ \(\orbr{\begin{cases}3-x=0\\3x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-\frac{1}{3}\end{cases}}\)
\(x\left(x-5\right)\left(x+5\right)-\left(x-2\right)\left(x^2+2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x^3+2x^2+4x-2x^2-4x-8\right)=3\)
<=> \(x^3-25x-x^3-2x^2-4x+2x^2+4x+8=3\)
<=> \(-25x+8=3\)
<=> \(-25x=-5\)
<=> \(x=\frac{1}{5}\)
\(25x^2-2=0\)
<=> \(\left(5x\right)^2=2\)
<=> \(\hept{\begin{cases}5x=\sqrt{2}\\5x=-\sqrt{2}\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{\sqrt{2}}{5}\\x=\frac{-\sqrt{2}}{5}\end{cases}}\)
\(\left(x+2\right)^2=\left(2x-1\right)^2\)
<=> \(\hept{\begin{cases}x+2=2x-1\\x+2=-2x+1\end{cases}}\)
<=> \(\hept{\begin{cases}-x=-3\\3x=-1\end{cases}}\)
<=> \(\hept{\begin{cases}x=3\\x=\frac{-1}{3}\end{cases}}\)
\(\left(x+2\right)^2-x^2+4=0\)
<=> \(\left(x+2\right)^2-\left(x^2-4\right)=0\)
<=> \(\left(x+2\right)^2-\left(x-2\right)\left(x+2\right)=0\)
<=> \(\left(x+2\right)\left(x+2-x+2\right)=0\)
<=> \(\left(x+2\right).4=0\)
<=> \(x+2=0\)
<=> \(x=-2\)
câu còn lại tương tự nha
\(3x\left(x-2020\right)-x+2020=0\)
\(3x\left(x-2020\right)-\left(x-2020\right)=0\)
\(\left(3x-1\right)\left(x-2020\right)=0\)
\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)
\(b,4-9x^2=0\)
\(2^2-\left(3x\right)^2=0\)
\(\left(2-3x\right)\left(2+3x\right)=0\)
\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)
\(c,x^2-x+\frac{1}{4}=0\)
\(x^2-x+\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2=0\)
\(x-\frac{1}{2}=0\)
\(x=\frac{1}{2}\)
\(d,x\left(x-3\right)+\left(x-3\right)=0\)
\(\left(x-3\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)
\(e,9x\left(x-7\right)-x+7=0\)
\(9x\left(x-7\right)-\left(x-7\right)=0\)
\(\left(9x-1\right)\left(x-7\right)=0\)
\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)
a) 3x(x - 2020) - x + 2020 = 0
<=> 3x(x - 2020) - (x - 2020) = 0
<=> (3x - 1)(x - 2020) = 0
<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)
Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)
b) \(4-9x^2=0\)
<=> \(\left(2-3x\right)\left(2+3x\right)=0\)
<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình
c) \(x^2-x+\frac{1}{4}=0\)
<=> \(\left(x-\frac{1}{2}\right)^2=0\)
<=> \(x-\frac{1}{2}=0\)
<=> \(x=\frac{1}{2}\)
d) x(x - 3) + (x - 3) = 0
<=> (x + 1)(x - 3) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình
e) 9x(x - 7) - x + 7 = 0
<=> (9x - 1)(x - 7) = 0
<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình
giúp mình với
\(x^2.\left(x-4\right)-x+4=0\)
\(\Rightarrow x^2.\left(x-4\right)-\left(x-4\right)=0\)
\(\Rightarrow\left(x-4\right).\left(x^2-1\right)=0\)
\(\Rightarrow\left(x-4\right).\left(x-1\right).\left(x+1\right)=0\)
Trường hợp 1: \(x-4=0\Rightarrow x=4\)
Trường hợp 2: \(x-1=0\Rightarrow x=1\)
Trường hợp 3: \(x+1=0\Rightarrow x=-1\)