K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2021

\(3x\left(x-2020\right)-x+2020=0\)

\(3x\left(x-2020\right)-\left(x-2020\right)=0\)

\(\left(3x-1\right)\left(x-2020\right)=0\)

\(\orbr{\begin{cases}x=\frac{1}{3}\left(TM\right)\\x=2020\left(TM\right)\end{cases}}\)

\(b,4-9x^2=0\)

\(2^2-\left(3x\right)^2=0\)

\(\left(2-3x\right)\left(2+3x\right)=0\)

\(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}\orbr{\begin{cases}x=\frac{2}{3}\left(TM\right)\\x=-\frac{2}{3}\left(TM\right)\end{cases}}}\)

\(c,x^2-x+\frac{1}{4}=0\)

\(x^2-x+\left(\frac{1}{2}\right)^2=0\)

\(\left(x-\frac{1}{2}\right)^2=0\)

\(x-\frac{1}{2}=0\)

\(x=\frac{1}{2}\)

\(d,x\left(x-3\right)+\left(x-3\right)=0\)

\(\left(x-3\right)\left(x+1\right)=0\)

\(\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\orbr{\begin{cases}x=3\left(TM\right)\\x=-1\left(TM\right)\end{cases}}}\)

\(e,9x\left(x-7\right)-x+7=0\)

\(9x\left(x-7\right)-\left(x-7\right)=0\)

\(\left(9x-1\right)\left(x-7\right)=0\)

\(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}\orbr{\begin{cases}x=\frac{1}{9}\left(TM\right)\\x=7\left(TM\right)\end{cases}}}\)

8 tháng 7 2021

a) 3x(x - 2020) - x + 2020 = 0 

<=> 3x(x - 2020) - (x - 2020) = 0

<=> (3x - 1)(x - 2020) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x-2020=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=2020\end{cases}}\)

Vậy tập nghiệm phương trình là \(S=\left\{\frac{1}{3};2020\right\}\)

b) \(4-9x^2=0\)

<=> \(\left(2-3x\right)\left(2+3x\right)=0\)

<=> \(\orbr{\begin{cases}2-3x=0\\2+3x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{2}{3};-\frac{2}{3}\right\}\)là nghiệm phương trình 

c) \(x^2-x+\frac{1}{4}=0\)

<=> \(\left(x-\frac{1}{2}\right)^2=0\)

<=> \(x-\frac{1}{2}=0\)

<=> \(x=\frac{1}{2}\)

d) x(x - 3) + (x - 3) = 0

<=> (x + 1)(x - 3) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Vậy \(x\in\left\{-1;3\right\}\)là nghiệm phương trình

e) 9x(x - 7) - x + 7 = 0

<=> (9x - 1)(x - 7) = 0

<=> \(\orbr{\begin{cases}9x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{9}\\x=7\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{9};7\right\}\)là nghiệm phương trình

20 tháng 8 2021

1, \(2x^3-50x=0\Leftrightarrow2x\left(x^2-25\right)=0\Leftrightarrow x=0;x=\pm5\)

2, \(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5\left(x-1\right)\left(x+1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left[5\left(x+1\right)-4\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+9\right)=0\Leftrightarrow x=-9;x=1\)

3, \(6x\left(x-2\right)=x-2\Leftrightarrow\left(6x-1\right)\left(x-2\right)=0\Leftrightarrow x=\frac{1}{6};x=2\)

4, \(7\left(x-2020\right)^2-x+2020=0\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)\left[7\left(x-2020\right)-1\right]=0\Leftrightarrow x=2020;x=\frac{14141}{7}\)

5, \(x^2-10x=-25\Leftrightarrow x^2-10x+25=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x=5\)

6, \(x^2-2x-3=0\Leftrightarrow\left(x+1\right)\left(x-3\right)=0\Leftrightarrow x=-1;x=3\)

\(1,\)

\(2x^3-50x=0\)

\(\Leftrightarrow2x\left(x^2-25\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2,\)

\(5x^2-4\left(x^2-2x+1\right)-5=0\)

\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)

\(\Leftrightarrow x^2+8x-9=0\)

\(\Leftrightarrow x^2-x+9x-9=0\)

\(\Leftrightarrow x\left(x-1\right)+9\left(x-1\right)=0\)

\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+9=0\\x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-9\\x=1\end{cases}}\)

\(3,\)

\(6x\left(x-2\right)=x-2\)

\(\Leftrightarrow6x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(6x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{1}{6}\end{cases}}\)

\(4,\)

\(7\left(x-2020\right)^2-x+2020=0\)

\(\Leftrightarrow7\left(x-2020\right)^2-\left(x-2020\right)=0\)

\(\Leftrightarrow\left(x-2020\right)[7\left(x-2020\right)-1]=0\)

\(\Leftrightarrow\left(x-2020\right)[7x-14141]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\7x=14141\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2020\\x=\frac{14141}{7}\end{cases}}\)

\(5,\)

\(x^2-10x=-25\)

\(\Leftrightarrow x^2-10x+25=0\)

\(\Leftrightarrow\left(x-5\right)^2=0\)

\(\Leftrightarrow x-5=0\)

\(\Leftrightarrow x=5\)

\(6,\)

\(x^2-2x-3=0\)

\(\Leftrightarrow x^2-3x+x-3=0\)

\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)

24 tháng 7 2018

chẳng có đề bài biết làm ntn

22 tháng 7 2019

b) \(x^3+6x^2+9x=0\)

\(\Leftrightarrow x^3+3x^2+3x^2+9x=0\)

\(\Leftrightarrow x^2\left(x+3\right)+3x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x\right)=0\)

\(\Leftrightarrow\left(x+3\right)x\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)^2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+3\right)^2=0\\x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=0\end{cases}}}\)

Vậy \(x\in\left\{-3;0\right\}\)

22 tháng 7 2019

a) \(2x\left(x-2\right)+x^2=4\)

\(\Leftrightarrow2x\left(x-2\right)+x^2-4=0\)

\(\Leftrightarrow2x\left(x-2\right)+\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{-2}{3}\end{cases}}}\)

Vậy \(x\in\left\{\frac{-2}{3};2\right\}\)

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

21 tháng 8 2020

1,\(5x^2=13x\Leftrightarrow5x^2-13x=0\Leftrightarrow x\left(5x-13\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{13}{5}\end{cases}}\)

2,\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\Leftrightarrow\orbr{\begin{cases}5x^2+3x-2=4x^2-3x-2\\5x^2+3x-2=-4x+3x+2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+6x=0\\9x^2-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x+6\right)=0\\\left(3x\right)^2=2^2\end{cases}\Leftrightarrow}}\orbr{\begin{cases}x=0or-6\\x=-\frac{2}{3}or\frac{2}{3}\end{cases}}\)

3,\(x^3+27+\left(x+3\right)\left(x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\Leftrightarrow\left(x+3\right)\left(x^2+4x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x^2+4x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x\left(x+4\right)=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-3\\x=0or-4\end{cases}}\)

4,\(5x\left(x-2000\right)-x+2000=0\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)

\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}\)

5,\(5x\left(x-2\right)-x+2=0\Leftrightarrow5x\left(x-2\right)-\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-2=0\\5x-1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{5}\end{cases}}\)

6,\(4x\left(x+1\right)=8\left(x+1\right)\Leftrightarrow4x\left(x+1\right)-8\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(4x-8\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\4x-8=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

7,\(x\left(x-4\right)+\left(x-4\right)^2=0\Leftrightarrow\left(x-4\right)\left(2x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\2x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

tí làm nửa kia 

21 tháng 8 2020

8,\(x^2-6x+8=0\Leftrightarrow x^2-6x+9-1=0\Leftrightarrow\left(x-3\right)^2-1^2=0\)

\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)

9,\(9x^2+6x-8=0\Leftrightarrow9x^2+6x+1-9=0\Leftrightarrow\left(3x+1\right)^2-3^2=0\)

\(\Leftrightarrow\left(3x+1-3\right)\left(3x+1+3\right)=0\Leftrightarrow\left(3x-2\right)\left(3x+4\right)=0\Leftrightarrow\orbr{\begin{cases}3x-2=0\\3x+4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{4}{3}\end{cases}}\)

10,\(x^3+x^2+x+1=0\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^2+1=0\end{cases}\Leftrightarrow}x=-1\)

11,\(x^3-x^2-x+1=0\Leftrightarrow\left(x-1\right)\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x-1=0\\x^2-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

12,\(\left(5-2x\right)\left(2x+7\right)=4x^2-25\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-4x^2+25=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7\right)-\left(5-2x\right)\left(5+2x\right)=0\)

\(\Leftrightarrow\left(5-2x\right)\left(2x+7-5-2x\right)=0\Leftrightarrow\left(5-2x\right).2=0\Leftrightarrow5-2x=0\Leftrightarrow x=\frac{5}{2}\)

13,\(x\left(2x-1\right)+\frac{1}{3}.\frac{2}{3}x=0\Leftrightarrow x\left(2x-1\right)+\frac{2}{9}x=0\)

\(\Leftrightarrow x\left(2x-1+\frac{2}{9}\right)=0\Leftrightarrow x\left(2x-\frac{7}{9}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\2x=\frac{7}{9}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{18}\end{cases}}\)

14,\(4\left(2x+7\right)-9\left(x+3\right)^2=0\Leftrightarrow8x+28-9x^2-54x-81=0\)

\(\Leftrightarrow-9x^2+\left(8x-54x\right)+\left(28-81\right)=0\Leftrightarrow-9x^2-46x-53=0\)

\(\Leftrightarrow9x^2+46x+53=0\)Ta có : \(\Delta'=\frac{2116}{4}-477=529-477=52\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-23+\sqrt{52}}{9}\\x=\frac{-23-\sqrt{52}}{9}\end{cases}}\)

18 tháng 7 2018

1)3x(x-2)=7(x-2)

<=>3x(x-2)-7(x-2)=0

<=>(x-2)(3x-7)=0

x-2=0=>x=2

3x-7=0=>x=7/3

cn lại lm tg tự

18 tháng 7 2018

10)\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=4\\x=5\end{cases}}\)

6 tháng 8 2021

a, \(5x\left(x-1\right)+\left(x+17\right)=0\)

\(\Leftrightarrow5x^2-5x+x+17=0\Leftrightarrow5x^2-4x+17=0\)

\(\Leftrightarrow5\left(x^2-\frac{4}{5}x\right)+17=0\Leftrightarrow5\left(x^2-2.\frac{2}{5}x+\frac{4}{25}-\frac{4}{25}\right)+17=0\)

\(\Leftrightarrow5\left(x-\frac{2}{5}\right)^2-\frac{4}{5}+17=0\Leftrightarrow5\left(x-\frac{2}{5}\right)^2+81\ge81>0\)

Vậy pt vô nghiệm 

b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)

\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\Leftrightarrow x.2x=0\Leftrightarrow x=0\)

c, \(2x^2-9x+7=0\Leftrightarrow2x^2-7x-2x+7=0\)

\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\Leftrightarrow\left(x-1\right)\left(2x-7\right)=0\Leftrightarrow x=1;x=\frac{7}{2}\)

6 tháng 8 2021

Trả lời:

a, \(5x\left(x-1\right)+\left(x+17\right)=0\)

\(\Leftrightarrow5x^2-5x+x+17=0\)

\(\Leftrightarrow5x^2-4x+17=0\)

\(\Leftrightarrow5\left(x^2-\frac{4}{5}x+\frac{17}{5}\right)=0\)

\(\Leftrightarrow x^2-\frac{4}{5}x+\frac{17}{5}=0\)

\(\Leftrightarrow x^2-2.x.\frac{2}{5}+\frac{4}{25}+\frac{81}{25}=0\)

\(\Leftrightarrow\left(x-\frac{2}{5}\right)^2+\frac{81}{25}=0\)

Vì \(\left(x-\frac{2}{5}\right)^2+\frac{81}{25}\ge\frac{81}{25}>0\forall x\)

nên pt vô nghiệm 

b, \(3x\left(x-3\right)^2-3x\left(x+3\right)^2=0\)

\(\Leftrightarrow3x\left[\left(x-3\right)^2-\left(x+3\right)^2\right]=0\)

\(\Leftrightarrow3x\left(x-3-x-3\right)\left(x-3+x+3\right)=0\)

\(\Leftrightarrow3x.\left(-9\right).2x=0\)

\(\Leftrightarrow-54x^2=0\)

\(\Leftrightarrow x^2=0\)

\(\Leftrightarrow x=0\)

Vậy x = 0 là nghiệm của pt.

c, \(7-9x+2x^2=0\)

\(\Leftrightarrow2x^2-7x-2x+7=0\)

\(\Leftrightarrow x\left(2x-7\right)-\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=1\end{cases}}}\)

Vậy x = 7/2; x = 1 là nghiệm của pt.

d, trùng ý c