K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2015

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2=\frac{1000}{2002}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}=\frac{1}{2002}\)

=> x + 1 = 2002 

=> x = 2002 - 1 

=> x = 2001

28 tháng 1 2018

Bạn Hồ Thu Giang làm rất tốt!

8 tháng 4 2018

Ta có: 1/3+1/6+1/10+...+2/x*(x+1)

=2/6+2/12+2/20+...+2/x*(x+1)

=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)

=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))

=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)

=2*(1/2-1/x+1)=2000/2002

=>1/2-1/x+1=2000/2002:2

=>1/2-1/x+1=500/1001

=>1/x+1=1/2-500/1001

=>1/x+1=1/2002

=>x+1=2002

=>x=2002-1

=>x=2001 thuộc N

Vậy x=2001

*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!

8 tháng 4 2018

uk mình cảm ơn bạn rất nhiều 

17 tháng 5 2016

Ta có: \(A=\frac{1}{3}+\frac{1}{6}+......+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

       \(A=\frac{1}{6}+\frac{1}{12}+......+\frac{1}{x.\left(x+1\right)}=\frac{2000}{2002}.\frac{1}{2}\)

   \(A=\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2000}{4004}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2000}{4004}\)

\(A=\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{4004}\)

\(A=\frac{1}{x+1}=\frac{1}{2}-\frac{2000}{4004}\)

       

\(A=\frac{1}{x+1}=\frac{1}{2002}\)

\(x+1=2002\)

nên \(x=2002-1=2001\)

Vậy x = 2001

7 tháng 7 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)

2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)

2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)

2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)

\(\frac{1}{x+1}=\frac{1}{2002}\)

2002.1 = (x+1).1

2002 = x+1

x=2001 (T/M)

7 tháng 7 2020

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)

\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)

\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)

19 tháng 9 2017

a) \(???\)

b) \(123x+877x=2000\)

     \(1000x=2000\)

      \(x=2000:1000\)

      \(x=2\)

c) \(2x.\left(x-10\right)=0\)

    => \(x-10=0\)

         \(x=10\)

d)\(6.\left(x+2\right)-\left(4x+10\right)=100\)

    \(6.x+12-4x+10=100\)

     \(2x+2=100\)

     \(2x=98\)

     \(x=98:2\)

     \(x=49\)

e) \(x.\left(x+1\right)=2+4+6+8+...+2500\)

     \(x.\left(x+1\right)=1563750\)

      mà ta thấy : \(1250.1251=1563750\)

=> \(x=1250\)

g)\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)

     \(x.100+5050=5750\)

     \(x.100=5750-5050\)

     \(x.100=700\)

     \(x=7\)

      

28 tháng 2 2016

Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2\)

=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)

=> \(\frac{1}{x+1}=\frac{1}{2002}\)

=> x + 1 = 2002

=> x = 2001