Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 1/3+1/6+1/10+...+2/x*(x+1)
=2/6+2/12+2/20+...+2/x*(x+1)
=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)
=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)
=2*(1/2-1/x+1)=2000/2002
=>1/2-1/x+1=2000/2002:2
=>1/2-1/x+1=500/1001
=>1/x+1=1/2-500/1001
=>1/x+1=1/2002
=>x+1=2002
=>x=2002-1
=>x=2001 thuộc N
Vậy x=2001
*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)
2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)
2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2002}\)
2002.1 = (x+1).1
2002 = x+1
x=2001 (T/M)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)
\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)
\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)
1) Ta có: A=\(\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}\right)=\)
=\(\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\)
=\(\frac{1}{3}\left(1-\frac{1}{x+3}\right)=\frac{1}{3}.\frac{x+2}{x+3}=\frac{125}{376}\)
<=> \(\frac{x+2}{x+3}=\frac{375}{376}\)<=> 376(x+2)=375(x+3) <=> 376x+752=375x+1125 => X=373
Đặt \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\)
\(\Rightarrow\frac{1}{2}A=\frac{1}{2}-\frac{1}{x+1}\)
\(\Rightarrow A=\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}\)
Theo bài ra ta có:
\(\left(\frac{1}{2}-\frac{1}{x+1}\right):\frac{1}{2}=\frac{2011}{2013}\)
\(\Rightarrow\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}.\frac{1}{2}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{2013}{4026}-\frac{2011}{4026}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2013}\)
=> x + 1 = 2013
=> x = 2013 - 1
=> x = 2012 \(\in\) N
Vậy x = 2012
Đặt S=1/3+1/6+1/10+..........+2/x(x+1)
1/2S=1/2[1/3+1/6+1/10+...+2/x(x+1)]
1/2S=1/6+1/12+1/20+......1/x(x+1)
1/2S=1/2.3+1/3.4+1/4.5+.....+1x(x+1)
1/2S=1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1
1/2S=1/2-1/x+1
Vì S=2011/2013
suy ra (1/2-1/x+1):1/2=2011/2013
(1/2-1/x+1).2=2011/2013
1/2-1/x+1=2011/2013:2
1/2-1/x+1=2011/4026
1/x+1=1/2-2011/4026
1/x+1=1/2013
suy ra x+1=2013
x=2013-1
x=2012
Ta có : \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
=> \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
=> \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
=> \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
=> \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2\)
=> \(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)
=> \(\frac{1}{x+1}=\frac{1}{2002}\)
=> x + 1 = 2002
=> x = 2001