Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2=\frac{1000}{2002}\)
=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}=\frac{1}{2002}\)
=> x + 1 = 2002
=> x = 2002 - 1
=> x = 2001
Ta có: \(A=\frac{1}{3}+\frac{1}{6}+......+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(A=\frac{1}{6}+\frac{1}{12}+......+\frac{1}{x.\left(x+1\right)}=\frac{2000}{2002}.\frac{1}{2}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2000}{4004}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{x}-\frac{1}{x+1}=\frac{2000}{4004}\)
\(A=\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{4004}\)
\(A=\frac{1}{x+1}=\frac{1}{2}-\frac{2000}{4004}\)
\(A=\frac{1}{x+1}=\frac{1}{2002}\)
\(x+1=2002\)
nên \(x=2002-1=2001\)
Vậy x = 2001
Ta có: 1/3+1/6+1/10+...+2/x*(x+1)
=2/6+2/12+2/20+...+2/x*(x+1)
=2/2*3+2/3*4+2/4*5+...+2/x*(x+1)
=2*(1/2*3+1/3*4+1/4*5+...+1/x*(x+1))
=2*(1/2-1/3+1/3-1/4+1/4-1/5+...+1/x-1/x+1)
=2*(1/2-1/x+1)=2000/2002
=>1/2-1/x+1=2000/2002:2
=>1/2-1/x+1=500/1001
=>1/x+1=1/2-500/1001
=>1/x+1=1/2002
=>x+1=2002
=>x=2002-1
=>x=2001 thuộc N
Vậy x=2001
*Mình ko biết ấn dấu phân số với dấu nhân ở đâu, bạn thông cảm nhé!
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x.\left(x+1\right)}=\frac{2000}{2002}\)
\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}\)=\(\frac{2000}{2002}\)
2.(\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\))=\(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{2000}{2002}\)
2.(\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)) = \(\frac{2000}{2002}\)
2.\(\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}\)
\(\frac{1}{x+1}=\frac{1}{2002}\)
2002.1 = (x+1).1
2002 = x+1
x=2001 (T/M)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)
\(\Rightarrow\) \(\frac{1}{2}-\frac{1}{x+1}=\frac{500}{1001}\)
\(\Rightarrow\) \(\frac{1}{x+1}=\frac{1}{2002}\)
\(\Rightarrow\) \(x+1=2002\) \(\Rightarrow\) \(x=2001\)
a,\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
= \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)\)
Vì 10<11<12<13<14 \(\Rightarrow\frac{1}{10}>\frac{1}{11}>\frac{1}{12}>\frac{1}{13}>\frac{1}{14}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}>0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b, \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(=\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)\)\(+\left(\frac{x+1}{2003}+1\right)\)
\(=\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(=\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
\(=\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
\(\Rightarrow x+2004=0\)
\(\Rightarrow x=-2004\)
a/ (X+1)/35+1+(x+3)/33+1 =(x+5)/31+(x+7)/29+1+1
=>(x+36)/35+(x+36)/33-(x+36)/31-(x+36)/27=0
=>(X+36)(1/35+1/33-1/31-1/29)=0
=> x+36=0(vì c=vế 2 luôn luôn khác 0)
=>x=-36
b/ CMTT câu a
trừ tung phân số cho 1 ta được x=2004