Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, \(\left(3x-1\right)\left(x+1\right)>0\)
Khi \(\orbr{\begin{cases}3x-1< 0\\x+1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}3x< 1\\x< -1\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -1\end{cases}}\)
Hoặc \(\orbr{\begin{cases}3x-1>0\\x+1>0\end{cases}}\Rightarrow\orbr{\begin{cases}3x>1\\x>-1\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-1\end{cases}}\)
b, \(\left(x+2\right)^2\left(x-3\right)\le0\)
\(\Rightarrow\text{ }\left(x+2\right)^2\text{ và }\left(x-3\right)\) đối nhau
Mà \(\left(x+2\right)^2\ge0\) nên \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x-3\le0\end{cases}}\Rightarrow\hept{\begin{cases}x+2\ge0\\x\le3\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\text{ }\left(\text{ loại}\right)\)
\(\Rightarrow\text{ }x\in\varnothing\)
c, \(\left(x-\frac{1}{3}\right)^5=4\left(x-\frac{1}{3}\right)^3\)
\(\left(x-\frac{1}{3}\right)^5-4\left(x-\frac{1}{3}\right)^3=0\)
\(\left(x-\frac{1}{3}\right)^3\left[\left(x-\frac{1}{3}\right)^2-4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^3=0\\\left(x-\frac{1}{3}\right)^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=0\\\left(x-\frac{1}{3}\right)^2=4=\left(\pm2\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{3}\text{ ; }x=\frac{7}{3}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{\frac{1}{3}\text{ ; }-\frac{5}{3}\text{ ; }\frac{7}{3}\right\}\)
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Bài 1
A = \(x\)(\(x-2\))
\(x=0\); \(x-2\) = 0 ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | - 0 + 2 + |
\(x-2\) | - - 0 + |
A =\(x\left(x-2\right)\) | + 0 - 0 + |
Để A ≥ 0 thì \(x\) ≥ 0 hoặc \(x\ge\) 2
Để A < 0 thì 0 < \(x\) < 2
Bài 1
b; \(\dfrac{-x+2}{3-x}\)
- \(x\) + 2 = 0 ⇒ \(x=2\)
3 - \(x=0\) ⇒ \(x=3\)
Lập bảng:
\(x\) | 2 3 |
-\(x+2\) | + 0 - - |
3 - \(x\) | + + 0 - |
A = \(\dfrac{-x+2}{3-x}\) | + - + |
B > 0 ⇔ \(x< 2\) hoặc \(x>3\)
B < 0 ⇔ 2 < \(x\) < 3
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
a: (2x-3)(3x+6)>0
=>(2x-3)(x+2)>0
=>x<-2 hoặc x>3/2
b: (3x+4)(2x-6)<0
=>(3x+4)(x-3)<0
=>-4/3<x<3
c: (3x+5)(2x+4)>4
\(\Leftrightarrow6x^2+12x+10x+20-4>0\)
\(\Leftrightarrow6x^2+22x+16>0\)
=>\(6x^2+6x+16x+16>0\)
=>(x+1)(3x+8)>0
=>x>-1 hoặc x<-8/3
f: (4x-8)(2x+5)<0
=>(x-2)(2x+5)<0
=>-5/2<x<2
h: (3x-7)(x+1)<=0
=>x+1>=0 và 3x-7<=0
=>-1<=x<=7/3
a)
\(\left(x-2\right)\left(x+7\right)\le0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2\ge0\\x+7\le0\end{matrix}\right.\\\left\{{}\begin{matrix}x-2\le0\\x+7\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2\le x\le-7\left(vô-lý\right)\\-7\le x\le2\end{matrix}\right.\)
=> -7 ≤ x ≤ 2
b) Em làm tương tự câu a nhé
c) \(\left(3x+1\right)\left(x-4\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3x+1< 0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}3x+1>0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}>x>4\left(vô-lý\right)\\-\dfrac{1}{3}< x< 4\end{matrix}\right.\)
d) \(\left(x-1\right)\left(2x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\2x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\2x-1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)