Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(x\in R\) nên \(x-3< x-2\) nên:
\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy....................
b, Giống câu a.
c, \(\left(x+3\right)\left(x-4\right)>0\)
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)
Vậy.............
d, Giống câu c
e, Dạng giống câu a
Chúc bạn học tốt!!!
a)\(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương
Mà \(x-3< x-2\)
Nên ta có:
\(x-3< 0\)=>\(x< 3\)
\(x-2>0\)=>\(x>2\)
Do đó:\(2< x< 3\)
Vậy \(2< x< 3\)
Các câu sau tương tự
a) A=x(x-2)
Để A>0
TH1: x>0 và x-2 < 0 ==> 0<x<2
TH2: x< 0 và x-2 >0 ===> Không có giá trị nào của x thỏa mãn;
Vậy : Để A< 0 thì 0<x<2
Để A lớn hơn hoặc bằng 0 thì :
TH1: x >=0 và x-2>=0 ===> x>=2
TH2 : x<=0 và x-2<=2 ===> x<=2
như vậy, để A lớn hơn hoặc bằng 0 thì x>=2 hoặc x<=2
Bài 1
A = \(x\)(\(x-2\))
\(x=0\); \(x-2\) = 0 ⇒ \(x=2\)
Lập bảng ta có:
\(x\) | - 0 + 2 + |
\(x-2\) | - - 0 + |
A =\(x\left(x-2\right)\) | + 0 - 0 + |
Để A ≥ 0 thì \(x\) ≥ 0 hoặc \(x\ge\) 2
Để A < 0 thì 0 < \(x\) < 2
Bài 1
b; \(\dfrac{-x+2}{3-x}\)
- \(x\) + 2 = 0 ⇒ \(x=2\)
3 - \(x=0\) ⇒ \(x=3\)
Lập bảng:
\(x\) | 2 3 |
-\(x+2\) | + 0 - - |
3 - \(x\) | + + 0 - |
A = \(\dfrac{-x+2}{3-x}\) | + - + |
B > 0 ⇔ \(x< 2\) hoặc \(x>3\)
B < 0 ⇔ 2 < \(x\) < 3
\(a,\left(x-1\right)\left(x+2\right)\le0\)
th1 :
\(\hept{\begin{cases}x-1\ge0\\x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le-2\end{cases}}\Rightarrow loai}\)
th2 :
\(\hept{\begin{cases}x-1\le0\\x+2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Rightarrow}-2\le x\le1}\)
\(b,\left(x-5\right)\left(3-x\right)>0\)
th1 :
\(\hept{\begin{cases}x-5>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x< 3\end{cases}\Rightarrow}loai}\)
th2 :
\(\hept{\begin{cases}x-5< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 5\\x>3\end{cases}\Rightarrow}3< x< 5}\)
c tương tự nha em
ảnh ko theo trật tự và bị thiếu nên mk sẽ gửi lại 1 tấm nx và mong bn thông cảm cho
Bài giải
a, \(\left(3x-1\right)\left(x+1\right)>0\)
Khi \(\orbr{\begin{cases}3x-1< 0\\x+1< 0\end{cases}}\Rightarrow\orbr{\begin{cases}3x< 1\\x< -1\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}\\x< -1\end{cases}}\)
Hoặc \(\orbr{\begin{cases}3x-1>0\\x+1>0\end{cases}}\Rightarrow\orbr{\begin{cases}3x>1\\x>-1\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{1}{3}\\x>-1\end{cases}}\)
b, \(\left(x+2\right)^2\left(x-3\right)\le0\)
\(\Rightarrow\text{ }\left(x+2\right)^2\text{ và }\left(x-3\right)\) đối nhau
Mà \(\left(x+2\right)^2\ge0\) nên \(\hept{\begin{cases}\left(x+2\right)^2\ge0\\x-3\le0\end{cases}}\Rightarrow\hept{\begin{cases}x+2\ge0\\x\le3\end{cases}}\Rightarrow\hept{\begin{cases}x\ge-2\\x\le3\end{cases}}\text{ }\left(\text{ loại}\right)\)
\(\Rightarrow\text{ }x\in\varnothing\)
c, \(\left(x-\frac{1}{3}\right)^5=4\left(x-\frac{1}{3}\right)^3\)
\(\left(x-\frac{1}{3}\right)^5-4\left(x-\frac{1}{3}\right)^3=0\)
\(\left(x-\frac{1}{3}\right)^3\left[\left(x-\frac{1}{3}\right)^2-4\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{3}\right)^3=0\\\left(x-\frac{1}{3}\right)^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=0\\\left(x-\frac{1}{3}\right)^2=4=\left(\pm2\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-\frac{5}{3}\text{ ; }x=\frac{7}{3}\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{\frac{1}{3}\text{ ; }-\frac{5}{3}\text{ ; }\frac{7}{3}\right\}\)