K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(a,\left(x-1\right)\left(x+2\right)\le0\)

th1 : 

\(\hept{\begin{cases}x-1\ge0\\x+2\le0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\le-2\end{cases}}\Rightarrow loai}\)

th2 : 

\(\hept{\begin{cases}x-1\le0\\x+2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\le1\\x\ge-2\end{cases}\Rightarrow}-2\le x\le1}\)

\(b,\left(x-5\right)\left(3-x\right)>0\)

th1 : 

\(\hept{\begin{cases}x-5>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>5\\x< 3\end{cases}\Rightarrow}loai}\)

th2 : 

\(\hept{\begin{cases}x-5< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 5\\x>3\end{cases}\Rightarrow}3< x< 5}\)

c tương tự nha em

7 tháng 7 2019

a) |x| = 0

<=> x = 0

b) |x| bé hơn hoặc bằng 3 và x thuộc Z

<=> x \(\in\){\(0;\pm1;\pm2;\pm3\)}

c) |x| = 4 và x > 0

<=> x = 4

d) | - x | = | - 2 |

<=> x = \(\pm2\)

e) |-x| = 1 va x > 0

<=> x = 1

f) |-x| = 0

<=> x = 0

g) |x| = | -3 |

<=> x = \(\pm3\)

Mình làm hết luôn r nha

h) |-x| = |-2|

7 tháng 7 2019

á còn thiếu câu h >.< x.x 

h. |-x| = |-2|

<=> x = \(\pm2\)

1 tháng 8 2018

\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)

Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)

\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)

Vậy \(x=1;y=-2;z=3\)

1 tháng 8 2017

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=A\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x;y;z\)

mà A\(\le0\)

\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\)​ phải bằng 0 đê thỏa mãn điều kiện

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{9}{2}\\y=-\dfrac{4}{3}\\z=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy....

b;c)I hệt câu a nên làm tương tự nhá

d)

Hơi tắt nhá

a) Đặt \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=B\)

B=\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\)

Thay ra ta tính đc :\(z=-\dfrac{11}{20}\)

Vậy....

1 tháng 8 2017

thanks bn nha

Ta có:

\(\left(\frac{3}{5}-x\right).\left(\frac{2}{5}-x\right)>0\)

\(\Rightarrow\frac{3}{5}-x>0\)và \(\frac{2}{5}-x>0\)

\(\Rightarrow x>\frac{3}{5}\)và \(x>\frac{2}{5}\)

MÌNH NGHĨ VẬY, NHỚ KICK ĐÚNG CHO MÌNH NHA.......( ^ _ ^ )

20 tháng 12 2018

\(\left(\frac{3}{5}-x\right)\left(\frac{2}{5}-x\right)>0\)

\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}\frac{3}{5}-x>0\\\frac{2}{5}-x>0\end{cases}}\\\orbr{\begin{cases}\frac{3}{5}-x< 0\\\frac{3}{5}-x< 0\end{cases}}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\orbr{\begin{cases}x< \frac{3}{5}\\x< \frac{2}{5}\end{cases}}\\\orbr{\begin{cases}x>\frac{3}{5}\\x>\frac{3}{5}\end{cases}}\end{cases}}\)

10 tháng 11 2019

Bài 1:

a) \(\left(x-1\right).\left(x+2\right)< 0\)

\(\Rightarrow\) \(x-1\)\(x+2\) khác dấu.

\(x-1< x+2.\)

Ta có:

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x+2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x+2< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>-2\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< -2\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}1>x>-2\\x\in\varnothing\end{matrix}\right.\)

Vậy nếu \(1>x>-2\) thì \(\left(x-1\right).\left(x+2\right)< 0.\)

Chúc bạn học tốt!