Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x
a) ( x - 1 )^3 + 1 + 3x( x - 4 ) = 0
b) x^3 - 6x^2 + 9x = 0
giúp mình với mình cần gấp
mình cảm ơn
b) \(x^3-6x^2+9x=0\)
\(\Leftrightarrow x.\left(x^2-6x+9\right)=0\)
\(\Leftrightarrow x.\left(x-3\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy \(x=0\)hoặc \(x=3\)
a. ( x - 1 )3 + 1 + 3x ( x - 4 ) = 0
<=> x3 - 3x2 + 3x - 1 + 1 + 3x2 - 12x = 0
<=> x3 - 9x = 0
<=> x ( x2 - 9 ) = 0
<=> \(\orbr{\begin{cases}x=0\\x^2-9=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
b. x3 - 6x2 + 9x = 0
<=> x ( x2 - 6x + 9 ) = 0
<=> x ( x - 3 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(a,9x^2-6x-3=0\)
\(\Leftrightarrow9x^2-6x+1-4=0\)
\(\Leftrightarrow\left(3x-1\right)^2=4\)
\(\Rightarrow3x-1=\pm2\)
\(\hept{\begin{cases}3x-1=2\Rightarrow x=1\\3x-1=-2\Rightarrow x=\frac{-1}{3}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{-1}{3}\)
\(b,x^3+9x^2+27x+19=0\)
\(\Leftrightarrow x^3+9x^2+27x+27-8=0\)
\(\Leftrightarrow\left(x+3\right)^3=8\)
\(\Rightarrow x+3=2\)
\(\Rightarrow x=-1\)
Vậy \(x=-1\)
\(c,x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+8\right)=3\)
\(\Leftrightarrow x^3-25x-x^3-8=3\)
\(\Leftrightarrow-25x=11\)
\(\Leftrightarrow x=\frac{-11}{25}\)
Vậy \(x=\frac{-11}{25}\)
\(9x^2-6x-3=0\)
<=> \(\left(3x\right)^2-2.3x.1+1-4=0\)
<=> \(\left(3x-1\right)^2-2^2=0\)
<=> \(\left(3x-3\right)\left(3x+1\right)=0\)
<=> \(\hept{\begin{cases}3x-3=0\\3x+1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(x^3+9x^2+27x+19\) \(=0\)
<=>\(x^3+x^2+8x^2+8x+19x+19=0\)
<=> \(x^2\left(x+1\right)+8x\left(x+1\right)+19\left(x+1\right)=0\)
<=> \(\left(x^2+8x+19\right)\left(x+1\right)=0\)
mà \(x^2+8x+19>0\)
=> \(x+1=0\)
<=> \(x=-1\)
\(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\)
<=> \(x\left(x^2-25\right)-\left(x+2\right)\left(x-2\right)^2=3\)
<=> \(x^3-25x-\left(x^2-4\right)\left(x-2\right)=3\)
<=> \(x^3-25x-\left(x^3-2x^2-4x+8\right)=3\)
<=> \(x^3-25x-x^3+2x^2+4x-8=3\)
<=> \(2x^2-21x-8=3\)
<=> \(2x^2-21x-11=0\)
<=> \(2x^2-22x+x-11=0\)
<=> \(2x\left(x-11\right)+\left(x-11\right)=0\)
<=> \(\left(2x+1\right)\left(x-11\right)=0\)
<=> \(\hept{\begin{cases}2x+1=0\\x-11=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=\frac{-1}{2}\\x=11\end{cases}}\)
tìm x biết :
a,(2x-3)^2 =(x+ 5)^2
b,x^2(x-1) -4x^2 +8x -4 =0
c, (x-4)^2 -36 =0
giúp mik nha mik đang gấp
a, (2x-3)^2=(x+5)^2
2x-3=x+5
2x-3-x-5=0
x-8=0
x=8
b, x^2(x-1)-4x^2+8x-4=0
x^2(x-1)-(4x^2-8x+4)=0
x^2(x-1)-4(x^2-2x+1)=0
x^2(x-1)-4(x-1)^2=0
(x-1)(x^2-4)(x-1)=0
(x-1)(x-2)(x+2)(x-1)=0
=>x-1=0=>x=1
=>x-2=0=>x=2
=>x+2=0=>x=-2
=>x-1=0=>x=1
Vậy : x=1 ;x=2 và x=-2
c, (x-4)^2-36=0
(x-4)^2-6^2=0
(x-4-6)(x-4+6)=0
(x-10)(x+2)=0
=>x-10=0=>x=10
=>x+2=0=>x=-2
Vậy : x=10 và x=-2
k đúng cho mình nhé bạn !
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
- Với x+1=0 =>x=-1
- Với x2+8x+19 =>vô nghiệm
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
1) \(x^2-2x+5+y^2-4y=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2=0\)
Vì \(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)
Để PT bằng 0 thì:
\(\left(x-1\right)^2=0\)và \(\left(y-2\right)^2=0\)
\(\Rightarrow x=1\)và \(y=2\)
2) \(y^2+2y+5-12x+9x^2=0\)
\(\Leftrightarrow\left(y^2+2y+1\right)+\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow\left(y+1\right)^2+\left(3x-2\right)^2=0\)
..............................................................................
..............<Giải thích như câu đầu>......................
.............................................................................
\(\left(y+1\right)^2=0\)và \(\left(3x-2\right)^2=0\)
\(\Rightarrow y=-1\)và \(x=\frac{2}{3}\)
3) \(x^2+20+9y^2+8x-12y=0\)
\(\Leftrightarrow\left(x^2+8x+16\right)+\left(9y^2-12y+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)^2+\left(3y-2\right)^2=0\)
......................................................................
...............<Giải thích như câu đầu>..............
.......................................................................
\(\left(x+4\right)^2=0\)và \(\left(3y-2\right)^2=0\)
\(\Rightarrow x=-4\)và \(y=\frac{2}{3}\)
a) = (3x +1)2 =0
3x+1 =0
x = -1/3
b) = (5x)2 -22 =0
(5x+2)(5x-2) = 0
5x+2 =0
x = -2/5
5x -2 =0
x= 2/5
xem đi rui lam tip
a) 9x2 + 6x + 1 = 0 => (3x)2 + 2 x 3x + 1 = 0 => (3x + 1)2 = 0 => 3x + 1 = 0 => x = \(\frac{-1}{3}\)
b) 25x2 = 4 => x2 = 4 : 25 => x2 = 0,16 => x = 0,4 hoặc x = -0,4
c) 8 - 125x3 = 0 => 125x3 = 8 => x3 = 8 : 125 => x3 = \(\frac{8}{125}\)=> x = \(\frac{2}{5}\)
a. \(\left(x^2-2x+1\right)-3x\left(x-1\right)=0\)
\(\Leftrightarrow x^2-2x+1-3x^2+3x=0\)
\(\Leftrightarrow-2x^2+x+1=0\)
\(\Leftrightarrow-2x^2+2x-x+1=0\)
\(\Leftrightarrow-2x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow-\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)
Vậy \(x\in\left\{-\frac{1}{2};1\right\}\)
b. \(4\left(7x-3\right)-\left(7x^2-3x\right)=0\)
\(\Leftrightarrow4\left(7x-3\right)-x\left(7x-3\right)=0\)
\(\Leftrightarrow\left(4-x\right)\left(7x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4-x=0\\7x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{3}{7}\end{cases}}\)
Vậy \(x\in\left\{4;\frac{3}{7}\right\}\)
c.\(\left(5-x\right)\left(2+3x\right)=4-9x^2\)
\(\Leftrightarrow\left(5-x\right)\left(2+3x\right)=\left(2-3x\right)\left(2+3x\right)\)
\(\Leftrightarrow\left(2+3x\right)\left(5-x-2+3x\right)=0\)
\(\Leftrightarrow\left(2+3x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2+3x=0\\2x+3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=-\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{-\frac{2}{3};-\frac{3}{2}\right\}\)
d. \(7-\left(2x+4\right)=-\left(x+4\right)\)
\(\Leftrightarrow7-2x-4=-x-4\)
\(\Leftrightarrow7-4+4=-x+2x\)
\(\Leftrightarrow7=x\)
Vậy x = 7
e. \(\left(x-1\right)-\left(2x-1\right)=9\)
\(\Leftrightarrow x-1-2x+1=9\)
\(\Leftrightarrow-x=9\)
\(\Leftrightarrow x=-9\)
g. \(x^3+x^2+x+1=0\)
\(\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x+1=0\end{cases}}\)Mà : \(x^2+1\ge1>0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Vậy x = -1
a) 5x(x-2) - 3(x-2) = 0
<=> (x-2) (5x-3) = 0
<=> TH1: x - 2 = 0
<=> x=2
TH2: 5x-3 = 0
<=> x= 3/5
b) (x-2)^2 - (x-1)(x+3)=1
<=> (x2-4x+2) - (x2+3x-x-3) = 1
<=> x2-4x+4-x2-3x+x+3=1
<=> -4x-3x+x= 1-4-3
<=> -6x=-6
<=> x= 1
b) 9x^2-(x-4)^2+0
9X^2-(x-4)^2=0 nha
mình gõ nhầm