Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 10 :
Câu a :
\(5xy\left(x-y\right)-2x+2y\)
\(=5xy\left(x-y\right)-2\left(x-y\right)\)
\(=\left(x-y\right)\left(5xy-2\right)\)
Câu b :
\(6x-2y-x\left(y-3x\right)\)
\(=2\left(3x-y\right)+x\left(3x-y\right)\)
\(=\left(3x-2y\right)\left(2+x\right)\)
Câu c :
\(x^2+4x-xy-4y\)
\(=x\left(x+4\right)-y\left(x+4\right)\)
\(=\left(x+4\right)\left(x-y\right)\)
Câu d :
\(3xy+2z-6y-xz\)
\(=\left(3xy-6y\right)-\left(xz-2z\right)\)
\(=3y\left(x-2\right)-z\left(x-2\right)\)
\(=\left(x-2\right)\left(3y-z\right)\)
Bài 11 :
Câu a :
\(4-9x^2=0\)
\(\Leftrightarrow\left(2-3x\right)\left(2+3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-3x=0\\2+3x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy ........................
Câu b :
\(x^2+x+\dfrac{1}{4}=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy........................
Câu c :
\(2x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy..................
Câu d :
\(3x\left(x-4\right)-x+4=0\)
\(\Leftrightarrow3x\left(x-4\right)-\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy................................
Câu e :
\(x^3-\dfrac{1}{9}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\\x+\dfrac{1}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy........................
Câu f :
\(\left(3x-y\right)^2-\left(x-y\right)^2=0\)
\(\Leftrightarrow\left(3x-y-x+y\right)\left(3x-y+x-y\right)=0\)
\(\Leftrightarrow2x\left(4x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\4x-2y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
Vậy..........................
1)\(21x^2y-12xy^2=xy.\left(21x-12y\right)\)
2)\(x^3+x^2-2x=x.\left(x^2+x-2\right)\)
3)\(3x.\left(x-1\right)+7x^2\left(x-1\right)=\left(x-1\right).\left(3x+7x^2\right)=x.\left(x-1\right)\left(3+7x\right)\)
15)\(\left(2a+3\right)^2-\left(2a+1\right)^2=\left(2a+3-2a-1\right)\left(2a+3+2a+1\right)=2.\left(4a+4\right)=8\left(a+1\right)\)
14) \(-4y^2+4y-1=-\left[\left(2y\right)^2-2.2y.1+1^2\right]=-\left(2y-1\right)^2\)
13) \(x^6+1=\left(x^2\right)^3+1=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
12) \(\left(x+1\right)^2-\left(y+6\right)^2=\left(x+1-y-6\right)\left(x+1+y+6\right)=\left(x-y-5\right)\left(x+y+7\right)\)
4) \(3x\left(x-a\right)+4a\left(a-x\right)=3x.\left(x-a\right)-4a\left(x-a\right)=\left(x-a\right)\left(3x-4a\right)\)
Sao nhiều thế!
Bài 2;
\(a)x^4-16x=0\Rightarrow x^4=16x\Leftrightarrow x^3=16\Leftrightarrow x=\sqrt[3]{16}\)
\(c)4x^2-\frac{1}{4}=0\Leftrightarrow4x^2=\frac{1}{4}\Leftrightarrow x^2=\frac{1}{16}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{1}{4}\end{cases}}\)
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{4;5\right\}\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(x+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
Vậy tập nghiệm của pt là \(S=\left\{-6;7\right\}\)
Bài 3:
a: =>(2x-7)(x-2)=0
=>x=7/2 hoặc x=2
b: =>(x-1)(x+2)=0
=>x=1 hoặc x=-2
d: =>2x+3=0
hay x=-3/2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
a) \(2x^2-2y^2\)
\(=2\left(x^2-y^2\right)\)
\(=2\left(x-y\right)\left(x+y\right)\)
b) \(x^2-4x+4\)
\(=x^2-2\cdot x\cdot2+2^2\)
\(=\left(x-2\right)^2\)
c) \(x^2+2x+1-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x-y+1\right)\left(x+y+1\right)\)
d) \(x^2-4x\)
\(=x\left(x-4\right)\)
e) \(x^2+10x+25\)
\(=x^2+2\cdot x\cdot5+5^2\)
\(=\left(x+5\right)^2\)
g) \(x^2-2xy+y^2-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
h) \(2x^2-2\)
\(=2\left(x^2-1\right)\)
\(=2\left(x-1\right)\left(x+1\right)\)
i) \(5x^2-5xy+9x-9y\)
\(=5x\left(x-y\right)+9\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+9\right)\)
k) \(y^2-4y+4-x^2\)
\(=\left(y-2\right)^2-x^2\)
\(=\left(y-x-2\right)\left(y+x-2\right)\)
l) \(x^2-16\)
\(=x^2-4^2\)
\(=\left(x-4\right)\left(x+4\right)\)
m) \(3x^2-3xy+2x-2y\)
\(=3x\left(x-y\right)+2\left(x-y\right)\)
\(=\left(x-y\right)\left(3x+2\right)\)
o) \(3x^4-6x^3+3x^2\)
\(=3x^2\left(x^2-2x+1\right)\)
\(=3x^2\left(x-1\right)^2\)
a) 2x2 - 2y2
= (2x - 2y)(2x + 2y)
= 4(x - y)(x + y)
b) x2 - 4x + 4
= (x - 2)2
c) x2 + 2x + 1 - y2
= (x + 1)2 - y2
= (x + 1 - y)(x + 1 + y)
d) x2 - 4x
= x(x - 4)
e) x2 +10x + 25
= (x + 5)2
g) x2 - 2xy + y2 - 9
= (x - y)2 - 32
= (x - y - 3)(x - y + 3)
h) 2x2 - 2
= 2(x2 - 1)
= 2(x - 1)(x + 1)
i) 5x2 - 5xy + 9x - 9y
= 5x(x - y) + 9(x- y)
= (5x + 9)(x - y)
k) y2 - 4y + 4 - x2
= (y - 2)2 - x2
= (y - 2 - x)(y - 2 + x)
l) x2 - 16
= x2 - 42
= (x - 4)(x + 4)
m) 3x2 - 3xy + 2x -2y
= 3x(x - y) +2(x-y)
= (3x + 2)(x - y)
o) 3x4 - 6x3 + 3x2
= 3x4 - 3x3 - 3x3 + 3x2
= 3x3(x - 1) - 3x2(x - 1)
= (3x3 - 3x2)(x - 1)
= 3x2(x - 1)(x - 1)
= 3x2.(x - 1)2
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2