Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(x\left(8x-2\right)-8x^2+12=0\)
\(\Leftrightarrow8x^2-2x-8x^2+12=0\)
\(\Leftrightarrow-2x+12=0\)
\(\Leftrightarrow-2x=-12\)
\(\Leftrightarrow x=6\)
b,\(x\left(4x-4\right)-\left(2x+1\right)^2=0\)
\(\Leftrightarrow4x^2-5x-\left(4x^2+4x+1\right)=0\)
\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)
\(\Leftrightarrow-9x-1=0\)
\(\Leftrightarrow-9x=1\)
\(\Leftrightarrow x=\frac{-1}{9}\)
\(x^2\left(2x-3\right)-12+8x=0\)
\(\Leftrightarrow x^2\left(2x-3\right)+\left(8x-12\right)=0\)
\(\Leftrightarrow x^2\left(2x-3\right)+4\left(2x-3\right)=0\)
\(\Leftrightarrow\left(x^2+4\right)\left(2x-3\right)=0\)
\(\Leftrightarrow x^2+4=0\)hoặc \(2x-3=0\)
\(TH:x^2+4=0\Rightarrow x^2=-4\)( vô nghiệm )
\(TH:2x-3=0\Rightarrow x=\frac{3}{2}\)( thỏa mãn )
Vậy \(x=\frac{3}{2}\)
1,
<=> \(\left(x-1\right)\left(x-2\right)^2=0\)
=> x=1 hoặc x=2
2,
<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0
=> x=-1
1.
<=> ( x -1 ) ( x - 2 ) 2 = 0
=> x = 1 hoặc x = 2
2.
<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0
=> x = -1
8x2+30x+7=0
8x2+16x+14x+7=0
8x(x+2) +7(x+2)=0
(8x+7)(x+2)=0
=>\(\orbr{\begin{cases}8x+7=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{7}{8}\\x=-2\end{cases}}}\)
a: \(x^2\left(2x-3\right)+8x-12=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)
=>2x-3=0
hay x=3/2
b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)
=>(2x-5)(x+11)=0
=>x=5/2 hoặc x=-11
c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)
\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)
hay \(x\in\left\{0;4;-4\right\}\)
1)
2x^2 + 12 + 2x.(4-x) = 0
2x^2 + 12 + 8x - 2x^2 = 0
12 + 8x = 0
8x = -12
x = -4/3
2)
A= 8x3 - 12x2y +6xy2 - y3
A = (2x)3 - 3.(2x)2.y + 3.2.x.y2 - y3
A = (2x-y)3
...
tính giá trị mk nhường bn làm đó!
Bài 1.
a) x( 8x - 2 ) - 8x2 + 12 = 0
<=> 8x2 - 2x - 8x2 + 12 = 0
<=> 12 - 2x = 0
<=> 2x = 12
<=> x = 6
b) x( 4x - 5 ) - ( 2x + 1 )2 = 0
<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0
<=> 4x2 - 5x - 4x2 - 4x - 1 = 0
<=> -9x - 1 = 0
<=> -9x = 1
<=> x = -1/9
c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )
<=> -4x2 - 4x + 35 = 4x2 - 25
<=> -4x2 - 4x + 35 - 4x2 + 25 = 0
<=> -8x2 - 4x + 60 = 0
<=> -8x2 + 20x - 24x + 60 = 0
<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0
<=> ( 2x - 5 )( -4x - 12 ) = 0
<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)
d) 64x2 - 49 = 0
<=> ( 8x )2 - 72 = 0
<=> ( 8x - 7 )( 8x + 7 ) = 0
<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)
e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0
<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0
<=> ( x + 3 )2 [ x( x + 1 ) + 7( x + 1 ) ] = 0
<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0
<=> x = -3 hoặc x = -1 hoặc x = -7
g) ( x2 + 1 )( x2 - 8x + 7 ) = 0
Vì x2 + 1 ≥ 1 > 0 với mọi x
=> x2 - 8x + 7 = 0
=> x2 - x - 7x + 7 = 0
=> x( x - 1 ) - 7( x - 1 ) = 0
=> ( x - 1 )( x - 7 ) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)
Bài 2.
a) ( x - 1 )2 - ( x - 2 )( x + 2 )
= x2 - 2x + 1 - ( x2 - 4 )
= x2 - 2x + 1 - x2 + 4
= -2x + 5
b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2
= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4
= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )
= -60x2 + 40x2 + 49
d) ( x + y )2 - ( x + y - 2 )2
= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]
= ( x + y - x - y + 2 )( x + y + x + y - 2 )
= 2( 2x + 2y - 2 )
= 4x + 4y - 4
Bài 3.
A = 3x2 + 18x + 33
= 3( x2 + 6x + 9 ) + 6
= 3( x + 3 )2 + 6 ≥ 6 ∀ x
Đẳng thức xảy ra <=> x + 3 = 0 => x = -3
=> MinA = 6 <=> x = -3
B = x2 - 6x + 10 + y2
= ( x2 - 6x + 9 ) + y2 + 1
= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)
=> MinB = 1 <=> x = 3 ; y = 0
C = ( 2x - 1 )2 + ( x + 2 )2
= 4x2 - 4x + 1 + x2 + 4x + 4
= 5x2 + 5 ≥ 5 ∀ x
Đẳng thức xảy ra <=> 5x2 = 0 => x = 0
=> MinC = 5 <=> x = 0
D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )
Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN
7x2 - 8x + 7
= 7( x2 - 8/7x + 16/49 ) + 33/7
= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x
Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7
=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7
\(\Leftrightarrow x^2\left(2x-3\right)+4\left(2x-3\right)=0\Leftrightarrow\left(x^2+4\right)\left(2x-3\right)=0\)
x^2+4>0 nên 2x-3=0 suy ra x=3/2