K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2019

\(x^2\left(2x-3\right)-12+8x=0\)

\(\Leftrightarrow x^2\left(2x-3\right)+\left(8x-12\right)=0\)

\(\Leftrightarrow x^2\left(2x-3\right)+4\left(2x-3\right)=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(2x-3\right)=0\)

\(\Leftrightarrow x^2+4=0\)hoặc \(2x-3=0\)

\(TH:x^2+4=0\Rightarrow x^2=-4\)( vô nghiệm )

\(TH:2x-3=0\Rightarrow x=\frac{3}{2}\)( thỏa mãn )

Vậy \(x=\frac{3}{2}\)

a: \(x^2\left(2x-3\right)+8x-12=0\)

\(\Leftrightarrow\left(2x-3\right)\left(x^2+4\right)=0\)

=>2x-3=0

hay x=3/2

b: \(\Leftrightarrow\left(2x-5\right)\left(2x+10\right)-\left(2x-5\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+10-x+1\right)=0\)

=>(2x-5)(x+11)=0

=>x=5/2 hoặc x=-11

c: \(\Leftrightarrow2x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

hay \(x\in\left\{0;4;-4\right\}\)

22 tháng 12 2018

1)

2x^2 + 12 + 2x.(4-x) = 0

2x^2 + 12 + 8x - 2x^2 = 0

12 + 8x = 0

8x = -12

x = -4/3

22 tháng 12 2018

2) 

A= 8x3 - 12x2y +6xy2 - y3

A = (2x)3 - 3.(2x)2.y + 3.2.x.y2 - y3

A = (2x-y)3

...

tính giá trị mk nhường bn làm đó!

4 tháng 8 2019

a,\(x\left(8x-2\right)-8x^2+12=0\)

\(\Leftrightarrow8x^2-2x-8x^2+12=0\)

\(\Leftrightarrow-2x+12=0\)

\(\Leftrightarrow-2x=-12\)

\(\Leftrightarrow x=6\)

b,\(x\left(4x-4\right)-\left(2x+1\right)^2=0\)

\(\Leftrightarrow4x^2-5x-\left(4x^2+4x+1\right)=0\)

\(\Leftrightarrow4x^2-5x-4x^2-4x-1=0\)

\(\Leftrightarrow-9x-1=0\)

\(\Leftrightarrow-9x=1\)

\(\Leftrightarrow x=\frac{-1}{9}\)

4 tháng 8 2019

A:x(8x -2) -8x2+12=0

8x2-2x-8x2+12=0

-2x+12=0

-2x=-12

x=6

Vậy......

b:x(4x-5)-(2x+1)2=0

4x2-5x-4x2-4x-1=0

-9x=1

x=-1/9

Vậy....

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

12 tháng 7 2019

g) \(\left(2x-1\right)^2-\left(2x+4\right)^2=0\)

\(\Leftrightarrow\left(2x-1+2x+4\right)\left(2x-1-2x-4\right)=0\)

\(\Leftrightarrow-5\left(4x+3\right)=0\)

\(\Leftrightarrow4x+3=0\)

\(\Leftrightarrow4x=-3\)

\(\Leftrightarrow x=\frac{-3}{4}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-3}{4}\right\}\)

12 tháng 7 2019

h) \(\left(2x-3\right)\left(3x+1\right)-x\left(6x+10\right)=30\)

\(\Leftrightarrow3x\left(2x-3\right)+\left(2x-3\right)-6x^2-10x=30\)

\(\Leftrightarrow6x^2-9x+2x-3-6x^2-10x=30\)

\(\Leftrightarrow-9x+2x-3-10x=30\)

\(\Leftrightarrow-17x-3=30\)

\(\Leftrightarrow-17x=33\)

\(\Leftrightarrow x=\frac{-33}{17}\)

Vậy tập nghiệm của pt là \(S=\left\{\frac{-33}{17}\right\}\)

5 tháng 11 2018

\(a,9x^2-49=0\)

\(9x^2=49\)

\(x^2=\frac{49}{9}=\frac{7^2}{3^2}=\frac{\left(-7\right)^2}{\left(-3\right)^2}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)

vậy ...

\(c,x^3-16x=0\)

\(x.\left(x^2-16\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=16\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=4,x=-4\end{cases}}\)

vậy ...

4 tháng 10 2018

\(x^2\left(2x-3\right)+12-8x=0\)

\(x^2\left(2x-3\right)-4\left(2x-3\right)=0\)

\(\left(2x-3\right)\left(x^2-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-3=0\\x^2-4=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\pm2\end{cases}}\)

Vậy.....

4 tháng 10 2018

x2.(2x-3) + 12-8x = 0

x2.(2x-3) + 4.(3-2x) = 0

x2.(2x-3) - 4.(2x-3) = 0

(2x-3).(x2 - 4) = 0

(2x-3).(x-2).(x+2) = 0

=> 2x-3 = 0 => 2x =  3 => x =3/2

x-2 = 0=> x = 2

x + 2 =0 => x  = -2

KL:...