Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3-50=0\)
\(\Rightarrow2\left(x^3-25\right)=0\)
\(\Rightarrow x^3-25=0\Rightarrow x^3=25\)
\(\Rightarrow x=\sqrt[3]{25}\)
\(x^2-5x=-6\)
\(\Rightarrow x\left(x-5\right)=-6\)
Xét ước
\(\left(2x-1\right)^2-\left(3x+5\right)=0\)
\(\Rightarrow4x^2-4x+1-3x-5=0\)
\(\Rightarrow4x^2-4-7x=0\)
\(\Rightarrow4x^2-7x=4\)
\(\Rightarrow x\left(4x-7\right)=4\)
Xét ước
\(4x^2-20x+25=0\)
\(\Rightarrow\left(2x-5\right)^2=0\)
\(\Rightarrow2x=5\Rightarrow x=\dfrac{5}{2}\)
\(\left(3x-1\right)^2-\left(x-2\right)^2=0\)
\(\Rightarrow\left(3x-1\right)^2=\left(x-2\right)^2\)
\(\Rightarrow\left|3x-1\right|=\left|x-2\right|\)
Xét dấu:v
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
\(x^3-25x=0\)
\(x\left(x^2-25\right)=0\)
\(x\left(x-5\right)\left(x+5\right)=0\)
\(x=0,x=5,x=-5\)
\(a,x^3-25x=0\)
\(\Leftrightarrow x\left[x^2-25\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x^2=25\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
Vậy : \(x\in\left\{0;\pm5\right\}\)
A(x) = 7 - 3x + x2 + 4x - 1 - 3x2
= ( 7 - 1 ) + ( 4 - 3 )x + ( 1 - 3 )x2
= 6 + x - 2x2
B(x) = 2x - 4 - 2x2 - x + 5 - 3x
= ( -4 + 5 ) + ( 2 - 3 - 1)x - 2x2
= 1 - 2x - 2x2
Để A(x) = B(x)
=> 6 + x - 2x2 = 1 - 2x - 2x2
=> 6 - 1 = -x - 2x - 2x2 + 2x2
=> 5 = -3x
=> x = -5/3
Vậy x = -5/3
Vào toán lp 7 :> I thick mấy bài đa thức ... chơi luôn cho máu !
\(A\left(x\right)=7-3x+x^2+4x-1-3x^2=6+x-2x^2\)
\(B\left(x\right)=2x-4-2x^2-x+5-3x=-2x+1-2x^2\)
Ta có : \(A\left(x\right)=B\left(x\right)\)
\(\Leftrightarrow6+x-2x^2=-2x+1-2x^2\)
\(\Leftrightarrow6+x-2x^2+2x-1+2x^2=0\)
\(\Leftrightarrow5+3x=0\Leftrightarrow3x=-5\Leftrightarrow x=-\frac{5}{3}\)
Mình đặt là a, b, c cho dễ nhé
a) \(3x-\left|x\right|=2x\)
\(\Leftrightarrow\)\(\left|x\right|=3x-2x\)
+) Nếu \(x\ge0\) ta có :
\(x=3x-2x\)
\(\Leftrightarrow\)\(x=x\) ( thoã mãn )
+) Nếu \(x< 0\) ta có :
\(-x=3x-2x\)
\(\Leftrightarrow\)\(-x=x\) ( loại )
Vậy \(x\ge0\) là tập hợp các giá trị x thoã mãn đề bài
b) \(\left(3x-1\right)^2=25\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left(3x-1\right)^2=5^2\\\left(3x-1\right)^2=\left(-5\right)^2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}3x=5+1\\3x=-5+1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=\dfrac{6}{3}\\x=\dfrac{-4}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{-4}{3}\end{matrix}\right.\)
Vậy \(x=2\) hoặc \(x=\dfrac{-4}{3}\)
c) \(25x^3-4x=0\)
\(\Leftrightarrow\)\(x\left(25x^2-4\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\25x^2-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(5x\right)^2-2^2=0\end{matrix}\right.\)
Từ \(\left(5x\right)^2-2^2=0\) suy ra \(\left(5x-2\right)\left(5x+2\right)=0\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}5x-2=0\\5x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=0+2\\5x=0-2\end{matrix}\right.\)
\(\Leftrightarrow\)\(\left[{}\begin{matrix}5x=2\\5x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{-2}{5}\end{matrix}\right.\)
Vậy \(x=0\) ; \(x=\dfrac{2}{5}\) hoặc \(x=\dfrac{-2}{5}\)
Chúc bạn học tốt ~