Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3x(x + 2) + 4x(-2x + 3) + (2x - 3)(3x + 1)
= 3x2 + 6x - 8x2 + 12x + 6x2 + 2x - 9x - 3
= (3x2 - 8x2 + 6x2) + (6x + 12x + 2x - 9x) - 3
= x3 + 11x - 3
b) (x2 + 1)(x2 - x + 2) - (x2 - 1)(x2 + x - 2)
= x4 - x3 + 3x2 - x + 2 - x4 - x3 + 3x2 + x - 2
= (x4 - x4) + (-x3 - x3) + (3x2 + 3x2) + (-x + x) + (2 - 2)
= -2x3 + 6x2
c) (-2x - 3)2 + (3x + 2)2 + (4x + 1)
= 4x2 + 12x + 9 + 9x2 + 12x + 4 + 4x + 1
= (4x2 + 9x2) + (12x + 12x + 4x) + (9 + 4 + 1)
= 13x2 + 28x + 14
a)( x + 3 )3 - x(3x + 1)2+ (2x + 1)(4x2 - 2x +1 )- 3x = 54
VT=3x2+23x+28
=>3x2+23x+28=54
=>3x2+23x+28-54=0
=>3x2+23x-26=0
=>(x-1)(3x+26)=0
=>x-1=0 hoặc 3x+26=0
=>x=1 hoặc x=\(-\frac{26}{3}\)
b)( x- 3 )3 - ( x - 3 ) ( x2 + 3x + 9 ) + 6 ( x + 1 )2 + 6x2 = -33
VT=3x2+39x+6
=>3x2+39x+6=-33
=>3x2+39x+39=0
=>3(x2+13+13)=0
=>x2+13+13=0
Tới đây dễ rồi nhé nếu bạn ko làm đc thì nhắn tin lại với mình :)
1. Ta có \(|3x-1|=\frac{1}{2}\)
\(\Rightarrow\)\(\orbr{\begin{cases}3x-1=\frac{1}{2}\\3x-1=-\frac{1}{2}\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=(\frac{1}{2}+1):3\\x=(-\frac{1}{2}+1):3\end{cases}}\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{1}{6}\end{cases}}\)
Sau đó tự thay x vào đa thức theo 2 trường hợp trên nha
Sai thì thôi nha bn mik cx chưa lm dạng này bh
Câu 1:
\(A\left(x\right)=6x^4-4x^2-3+9x+5x^2-7x-2x^4+4-2x-4x^4\)
\(=\left(6x^4-2x^4-4x^4\right)+\left(-4x^2+5x^2\right)+\left(-7x-2x\right)+9x+\left(-3+4\right)\)
\(=x^2+9x+1\)
Ta có: \(\left|3x-1\right|=\frac{1}{2}\)
TH1: \(3x-1=\frac{1}{2}\Rightarrow3x=\frac{1}{2}+1=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3=\frac{1}{2}\)
\(A\left(\frac{1}{2}\right)=\left(\frac{1}{2}\right)^2+9\cdot\frac{1}{2}+1=\frac{1}{4}+\frac{9}{2}+1=\frac{23}{4}\)
TH2: \(3x-1=\frac{-1}{2}\Rightarrow3x=\frac{-1}{2}+1=\frac{1}{2}\Rightarrow x=\frac{1}{2}:3=\frac{1}{6}\)
\(A\left(\frac{1}{6}\right)=\left(\frac{1}{6}\right)^2+9\cdot\frac{1}{6}+1=\frac{91}{36}\)
A(x) = 7 - 3x + x2 + 4x - 1 - 3x2
= ( 7 - 1 ) + ( 4 - 3 )x + ( 1 - 3 )x2
= 6 + x - 2x2
B(x) = 2x - 4 - 2x2 - x + 5 - 3x
= ( -4 + 5 ) + ( 2 - 3 - 1)x - 2x2
= 1 - 2x - 2x2
Để A(x) = B(x)
=> 6 + x - 2x2 = 1 - 2x - 2x2
=> 6 - 1 = -x - 2x - 2x2 + 2x2
=> 5 = -3x
=> x = -5/3
Vậy x = -5/3
Vào toán lp 7 :> I thick mấy bài đa thức ... chơi luôn cho máu !
\(A\left(x\right)=7-3x+x^2+4x-1-3x^2=6+x-2x^2\)
\(B\left(x\right)=2x-4-2x^2-x+5-3x=-2x+1-2x^2\)
Ta có : \(A\left(x\right)=B\left(x\right)\)
\(\Leftrightarrow6+x-2x^2=-2x+1-2x^2\)
\(\Leftrightarrow6+x-2x^2+2x-1+2x^2=0\)
\(\Leftrightarrow5+3x=0\Leftrightarrow3x=-5\Leftrightarrow x=-\frac{5}{3}\)
a) \(f\left(x\right)=4x^3-2x^2+5x+1-4x^3+3x^2-4x-1\)
\(f\left(x\right)=x^2+x\)
b) Bạn tự làm nhé
c) Ta có \(f\left(x\right)=0\Leftrightarrow x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\Rightarrow x=0\) hoặc \(x+1=0\Leftrightarrow x=-1\)
Vậy \(x\in\left\{0;-1\right\}\)
a) Ta có: (4x3 - 2x2 + 5x + 1) - f(x) = 4x3 - 3x2 + 4x + 1
=> f(x) = (4x3 - 2x2 + 5x + 1) - (4x3 - 3x2 + 4x + 1)
=> f(x) = 4x3 - 2x2 + 5x + 1 - 4x3 + 3x2 - 4x - 1
=> f(x) = (4x3 - 4x3) - (2x2 - 3x2) + (5x - 4x) + (1 - 1)
=> f(x) = x2 + x
b) Bậc của f(x) : 2
Hệ số cao nhất là : 1
c) Ta có : f(x) = 0
=> x2 + x = 0
=> x(x + 1) = 0
=> \(\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
Vậy x = 0 và x = -1 là nghiệm của f(x)