Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, +, Nếu p=2 thì : p^2+14 = 18 ko tm
+, Nếu p=3 thì : p^2+14 = 23 tm
+, Nếu p > 3 => p ko chia hết cho 3
=> p^2 chia 3 dư 1 => p^2+14 chia hết cho 3
Mà p^2+14 > 3 => p^2+14 là hợp số
Vậy p = 3
Tk mk nha
Giả sử p là SNt>3
p là SNT>3 thì p2 chia 3 dư 1
p2=3k+1
p2+14=3k+1+14=3k+15=3(k+5) chia hết cho 3 nên ko là SNt, loại
Vậy p=2 hoặc p=3
p=2 ko thỏa mãn
Vậy p=3
Thử lại 32+14=9+14=13, thỏa mãn là SNT
do p là số nguyên tố =>p>=2
xét p=2 => p+10 =12 (không là số nguyên tố)
xét p=3 => p+10 =13 (là số nguyên tố ) ,p+14 =17 (là số nguyên tố)
=> p=3 thỏa mãn đề bài
xét p là số nguyên tố >3 => p không chia hết cho 3 . nếu p chia 3 dư 1
=> p+14 chia hết cho 3 mà p+14 >3 => p+14 không là số nguyên tố => vô lý
nếu p chia 3 dư 2=> p+10 chia hết cho 3 mà p+10 >3 => p+10 không là số nguyên tố
vậy với p là số nguyên tố >3 thì p không thỏa mãn đề bài
p=3 là số nguyên tố duy nhất thỏa mãn đề bài
Xét n=1 thì biểu thức A = 3
Xét n>1:
Ta có: \(A=n^{2015}+n+1\)
\(=\left(n^{2015}-n^2\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^{2013}-1\right)+\left(n^2+n+1\right)\)
Dễ nhận ra \(n^{2013}-1⋮n^3-1\Rightarrow n^{2013}-1=k\left(n^3-1\right)=k\left(n-1\right)\left(n^2+n+1\right)\)
\(\Rightarrow n^2\left(n^{2013}-1\right)=k\left(n-1\right)n^2\left(n^2+n+1\right)=k'\left(n^2+n+1\right)\)
\(\Rightarrow A=k'\left(n^2+n+1\right)+\left(n^2+n+1\right)=\left(n^2+n+1\right)\left(k'+1\right)\)là hợp số
Vậy n=1
p>3 thì p^2+2^p=(p^2-1)+(2^p+1) p^2 là số chính phương nên chia 3 dư 1 -> p^2-1 chia hết cho 3 (2^p+1) chia hết cho 3 vì p là số lẻ xong rồi, suy ra p^2+2^p chia hết cho 3 ko là snt ko thõa. Xét p=3 thõa
Vói mọi p ta có p^2 có 1 trong 2 dạng sau:
3k và 3k+1
Với p^2=3k, p là số nguyên tố=> p=3
Với p^2=3k+1=> p^2+14=3k+1+14=3k+15 chia hết cho 3
Mà 3k+15>3=> p^2+14 là hợp số ( vô lý)
Vậy p=3