K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
NN
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
KT
0
NA
0
HM
1
DD
Đoàn Đức Hà
Giáo viên
26 tháng 8 2021
\(x^2-2y^2-xy+2x-y-2=0\)
\(\Leftrightarrow x^2+xy+x-2xy-2y^2-2y+x+y+1=3\)
\(\Leftrightarrow\left(x+y+1\right)\left(x-2y+1\right)=3\)
Mà \(x,y\)nguyên nên \(x+y+1,x-2y+1\)là các ước của \(3\).
Ta có bảng giá trị:
x+y+1 | -3 | -1 | 1 | 3 |
x-2y+1 | -1 | -3 | 3 | 1 |
x | -10/3 (l) | -8/3 (l) | 2/3 (l) | 4/3 (l) |
y |
Vậy phương trình đã cho không có nghiệm nguyên.
\(x^5\) - 2\(x^4\) - (y2 + 3)\(x\) + 2y2 - 2 = 0
(\(x^5\) - 2\(x^4\))- (y2 + 3)\(x\) + 2.(y2 + 3) - 8 = 0
\(x^4\).(\(x\) - 2) - (y2 + 3).(\(x\) - 2) - 8 = 0
(\(x\) - 2).(\(x^4\) - y2 - 3) = 8
8 = 23; Ư(8) = {-8; - 4; -2; - 1; 1; 2; 4; 8}
Lập bảng ta có:
vì \(x\); y nguyên nên theo bảng trên ta có các cặp \(x\); y thỏa mãn đề bài là:
(\(x\); y) = (0; -1;); (0; 1)