Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3n+5⋮n+1.
(3n+3)+2⋮n+1.
3(n+1)+2⋮n+1.
mà 3(n+1)⋮n+1
⇒2⋮n+1⇒n+1∈U(2)={±1;±2}.
Ta lập bảng xét giá trị
n+1 | -1 | 1 | -2 | 2 |
n | -2 | 0 | -3 | 1 |
Vì 3n-5:hết cho n+1mà n+1 : hết cho n+1 =≫3.(n+1)
TC : 3n-5 -[3.(n+1)]:hết cho n+1
3n-5 -(3n+3) :hết cho n+1
3n- 5 - 3n-3:hết cho n+1
2:hết cho n+1 =≫n+1 thuôc Ư(2)={1;2}
thay n+1lần lượt= 1;2 là ban sẽ ra
3n+1 chia hết 11-n
<=> 3n+1+(11-n).3 chia hết 11-n (11-n chia hết cho 11-n)
<=>12 chia hết 11-n
=> 11-n thuộc tập hợp Ư(12) = {1; 2; 3; 4; 6 ; 12}
Mà 11-n <12 =)) 11-n thuộc tập hợp {1; 2; 3; 4; 6}
Vậy n thuộc tập hợp {5; 7; 8; 9; 10}
Mình đánh máy nên ko dùng kí hiệu đc, mong bạn thông cảm giúp mình
Gọi số tự nhiên cần tìm là a
Ta có : \(\hept{\begin{cases}a⋮5\\a⋮7\\a⋮9\end{cases}}\Rightarrow a\in BC\left(5;7;9\right)\)
mà a nhỏ nhất có thể
=> \(a=BCNN\left(5;7;9\right)\)
Vì ƯCLN(5;7;9) = 1
=> BCNN(5;7;9) = 5.7.9 = 315
=> a = 315
Vậy số cần tìm là 315
Gọi số tự nhiên cần tìm là a
Theo đề bài : a chia hết cho 5 , a chia hết cho 7 , a chia hết cho 9 và a là số tự nhiên nhỏ nhất
=> a = BCNN(5, 7 , 9 )
BCNN(5, 7 , 9) = 5 . 7 . 32 = 315
=> a = 315
Vậy số cần tìm là 315
a/
\(\dfrac{2n+9}{n+1}=\dfrac{2\left(n+1\right)+7}{n+1}=2+\dfrac{7}{n+1}\)
\(\Rightarrow n+1=\left\{-7;-1;1;7\right\}\Rightarrow n=\left\{-8;-2;0;6\right\}\)
b/
\(\dfrac{3n+5}{n-1}=\dfrac{3\left(n-1\right)+8}{n-1}=3+\dfrac{8}{n-1}\)
\(\Rightarrow n-1=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)
\(\Rightarrow n=\left\{-7;-3;-1;0;2;5;9\right\}\)
\(\frac{n-3}{n+2}\inℤ\Leftrightarrow n-3⋮n+2\)
=> n + 2 - 5 ⋮ n + 2
n + 2 ⋮ n + 2
=> 5 ⋮ n + 2
=> n + 2 thuộc {-1; 5; 1; -5}
=> n thuộc {-3; 3; -1; -7}
vậy_
Mọi người giúp mik nhanh nha!!! mik đang cần gấp.
Tìm số tự nhiên x sao cho x + 3 chia hết cho x2 + 1
Vì x+3 chia hết cho x^2+1
suy ra x(x+3) chia hết cho x^2+1
X^2+3x chia hết cho x^2+1 (1)
Mà x^2+1 chia hết cho x^2+1 (2)
từ (1) và (2) có:(x^2+3x)-(x^2+1) chia hết cho x^2+1
x^2 + 3x - x^2 - 1 chia hét cho ...........(như trên)
3x-1 chia hết cho ............. (3)
Lại có x+3 chia hết cho .............. suy ra 3x +9 chia hết cho ............ (4)
từ (3) và (4) có: (3x+9) - (3x-1) chia hết cho..........
3x + 9 - 3x + 1 chia hết cho ................
10 chia hết cho x^2+1
suy ra x^2+1 thuộc ước của 10={.........}
lập bảng:
x^2+1 1 -1 2 -2 5 -5 10 -10
x^2 0 -2 1 -3 4 -6 9 -11
x 0 loại 1 loại 2 loại 3 loại
vậy x thuộc {0;1;2;3}
\(3n+5⋮n+1\)
\(\Leftrightarrow3\left(n+1\right)+2⋮n+1\)
\(\Leftrightarrow2⋮n+1\)
Vì n là stn => n + 1 > 1
Ta có bảng :
Vậy \(n\in\left\{0;1\right\}\)