Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)(6n-4) chia hết cho (1-2n)
Ta có (1-2n)=3(1-2n)=3-6n
\(\Rightarrow\)(6n-4+3-6n)\(⋮\)(1-2n)
\(\Rightarrow\)(-1)\(⋮\)(1-2n)\(\Rightarrow\)(1-2n)\(\in\) Ư(1)={±1}
Ta có bảng
1-2n | -1 | 1 |
2n | 2 | 0 |
n | 1 | 0 |
Vậy...
T.i.c.k cho mình nhé
- #TM
\(3-2n⋮n+1\)
\(\Leftrightarrow-2n+3⋮n+1\)
\(\Leftrightarrow-2\left(n+1\right)+5⋮n+1\)
\(\Leftrightarrow5⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(5\right)\)
\(\RightarrowƯ\left(5\right)\in\left\{\pm1;\pm5\right\}\)
Ta có bảng sau:
n+1 | -1 | 1 | -5 | 5 |
n | -2 | 0 | -6 | 4 |
KL | tm | tm | tm | tm |
mình xin lỗi mình đánh máy sai câu hỏi như này
A) n+7 chia hết cho n+2 ( với n khác 2 )
B) 3n+1 chia hết cho 2n+3
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
\(7⋮\left(2n-3\right)\Leftrightarrow2n-3\inƯ\left(7\right)=\left\{-7,-1,1,7\right\}\)
\(\Leftrightarrow2n\in\left\{-4,2,4,10\right\}\Leftrightarrow n\in\left\{-2,1,2,5\right\}\).
\(3n+17⋮2n+3\)
\(\Leftrightarrow2.\left(3n+17\right)⋮2n+3\)
\(\Leftrightarrow6n+34⋮2n+3\)
\(\Leftrightarrow3.\left(2n+3\right)+25⋮2n+3\)
Mà \(3.\left(2n+3\right)⋮2n+3\)
\(\Rightarrow25⋮2n+3\)
\(\Rightarrow2n+3\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)
Làm nốt
\(2n-1⋮n+1\)
\(\Rightarrow2n+2-3⋮n+1\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Rightarrow n+1=1;-1;3;-3\)
\(\Rightarrow n=0;-2;2;-4\)
Ta có:
2n+1 chia hết cho n-3
<=> 2n+1-6+6 chia hết cho n-3
<=> 2n-6+7 chia hết cho n-3
Vì 2n-6 chia hết cho n-3 mà 2n-6+7 chia hết cho n-3 => 7 chia hết cho n-3
=>n-3 thuộc Ư(7)={-1;1;-7;7}
Nếu n-3=-1 =>n=2(t/m)
Nếu n-3=1 =>n=4(t/m)
Nếu n-3=-7 =>n=-4(t/m)
Nếu n-3=7 =>n=10(t/m)
Vậy n= -4;2;4;10
ta có : \(6n-3=3\times\left(2n-2\right)+3\) chia hết cho 2n-2 khi
3 chia hết cho 2n-2
mà 2n-2 là số chẵn nên 3 không thể chia hết cho 2n-2 vậy không tồn tại số tự nhiên thỏa mãn
Thanks bạn nha !!!