Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
c: \(\Leftrightarrow n+1\in\left\{1;-1\right\}\)
hay \(n\in\left\{0;-2\right\}\)
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
4n+1 hia hết cho 2n-1
=>4n-2+3 chia hết cho 2n-1
2(2n-1)+3 chia hết cho2n-1 mà 2(2n-1) chia hết cho 2n-1 nên 3 chia hết cho 2n-1
hay 2n-1 thuộc Ư(3)={3;-3;1;-1}
2n-1=3=>n=2
2n-1=-3=>n=-1
2n-1=1=>n=1
2n-1=-1=>n=0
VẬY n thuộc {2;-1;1;0}
Theo bài ra ta có:
4n+1chia hết cho 2n-1
=>(4n+1)-(2n-1)chia hết cho2n-1
=>(4n+1)-2.(2n-1) chia hết cho 2n-1
=>4n+1-4n-2 chia hết cho 2n-1
=>-1 chi hết cho 2n-1=>2n-1 thuộc Ư(-1)={1;-1}
2n-1 | 1 | -1 |
n | 1 | 0 |
Vậy n=1 hoặc n=0
a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11
Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3
=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8
b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6
Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1
=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7
c) 2n2 + 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13
Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2
=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11
Mình chỉ có thể giải câu d theo kiểu lớp 8
a) n2 + 4n - 8 = n2 + 3n + n + 3 - 11 = n(n + 3) + (n + 3) - 11 = (n + 1)(n + 3) - 11
Để biểu thức trên chia hết cho n + 3 thì 11 .: n + 3
=> n + 3 = -11 ; -1 ; 1 ; 11 => n = -14 ; -4 ; -2 ; 8
b) n2 + 5 = n2 - n + n - 1 + 6 = n(n - 1) + (n - 1) + 6 = (n + 1)(n - 1) + 6
Để biểu thức trên chia hết cho n - 1 thì 6 .: n - 1
=> n - 1 = -6 ; -1 ; 1 ; 6 => n = -5 ; 0 ; 2 ; 7
c) 2n2 + 5 = 2n2 - 4n + 4n - 8 + 13 = n( 2n - 4) + 2(2n - 4) + 13 = (n + 2)(2n - 4) + 13
Để biểu thức trên chia hết cho n + 2 thì 13 .; n + 2
=> n + 2 = -13 ; -1 ; 1 ; 13 => n = -15 ; -3 ; -1 ; 11
\(\left(4n+1\right)⋮\left(2n-1\right)\\ \Rightarrow\left(4n-2+3\right)⋮\left(2n-1\right)\\ \Rightarrow\left[2\left(2n-1\right)+3\right]⋮\left(2n-1\right)\)
Vì \(2\left(2n-1\right)⋮\left(2n-1\right)\Rightarrow3⋮\left(2n-1\right)\Rightarrow2n-1\inƯ\left(3\right)\)
Ta có bảng:
Vậy \(n\in\left\{-1;0;1;2\right\}\)