K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

SHTQ là: \(C^k_4\cdot\left(2x\right)^{4-k}\cdot\left(-\dfrac{1}{x^2}\right)^k=C^k_4\cdot2^{4-k}\cdot\left(-1\right)^k\cdot x^{4-3k}\)

Số hạng chứa 1/x^2 tương ứng với 4-3k=-2

=>3k=6

=>k=2

=>Số hạng đó là: 24/x^2

NV
11 tháng 8 2020

\(=\left(3x^2+1\right)^{10}\left(x+1\right)^{10}\)

Do tất cả các số hạng chứa x trong khai triển \(\left(3x^2+1\right)^{10}\) đều mũ chẵn và số hạng tự do duy nhất bằng 1

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) bằng hệ số của số hạng chứa \(x^5\) trong khai triển \(\left(x+1\right)^{10}\)

Theo khai triển nhị thức Newton thì hệ số này bằng 252

13 tháng 12 2019

Lam thu :3

\(Tk+1=Ck_6.\left(2x\right)^{6-k}.\left(-\frac{1}{x^2}\right)\)

\(=Ck_6.2^{6-k}.x^{6-k}.\frac{\left(-1\right)^k}{x^{2k}}\)

\(-Ck_6.2^{6-k}.x^{6-k-2k}.\left(-1\right)^k\)

SH o chua x \(\Leftrightarrow x^{6-3k}=x^0\)

\(\Leftrightarrow6-3k=0\)

\(\Leftrightarrow k=2\)

\(\Rightarrow SH\)can tim la: \(C^{2_6}.2^4.x^0.\left(-1\right)^2\)

1. Tổng các hệ số của đa thức là: 12004.22005=22005

2.Cần chứng minh x4+x3+x2+x+1=0 vô nghiệm.

Nhận thấy x = 1 không là nghiệm của phương trình .

Nhân cả hai vế của pt cho (x−1)≠0 được : 

(x−1)(x4+x3+x2+x+1)=0⇔x5−1=0⇔x=1(vô lí)

Vậy pt trên vô nghiệm.

25 tháng 2 2018

1. Tổng các hệ số của đa thức là: 

12014 . 22015 = 22015

2 . Cần chứng minh. 

\(x4 + x3 + x2 + x + 1 = 0\)

Vô nghiệm. 

Ta nhận thấy \(x + 1 \) không là nghiệm của phương trình. 

Nhân cả hai vế của phương trình cho:

\(( x - 1 ) \) \(\ne\) \(0\) được :

\(( x-1). (x4+x3+x2+x+1)=0\)

\(\Leftrightarrow\)\(5x-1=0\) \(\Leftrightarrow\) \(x = 1\)

Vô lí. 

Vậy phương trình trên vô nghiệm. 

21 tháng 12 2020

đáp án =-1


 

a: \(=4a-4\sqrt{10a}-9\sqrt{10a}=4a-13\sqrt{10a}\)

b: \(=\sqrt{x}\left(4-\sqrt{2}\right)\cdot\sqrt{x}\left(1-\sqrt{2}\right)\)

\(=x\cdot\left(4-4\sqrt{2}-\sqrt{2}+2\right)\)

\(=\left(6-5\sqrt{2}\right)x\)

c: \(=\dfrac{2}{2x-1}\cdot x\sqrt{5}\cdot\left(2x-1\right)=2x\sqrt{5}\)

21 tháng 4 2019

Tớ đặt x1=a, x2=b cho dễ nhé

A=a^4+b^4 
=(a^4+2.a²b²+b^4)-2.a²b² 
=(a²+b²)²-.(√2.a.b)² 
=(a²-√2.a.b+b²)(a²+√2.a.b+b²) 

Có phải là phân tích đa thức thành nhân tử ko z