Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em học đồng dư thức chưa
Học r thì dùng đồng dư nhé ( ko bt đánh dấu đồng dư nên viết tắt là dd nhé )
2135 dd 3 ( mod 13 ) => 213597 dd 397 ( mod 13)
Lại có 397 = (33)32.3 mà 33 = 27 dd 1 (mod 13) => (33)32 dd 1 (mod 13) => 397 dd 3 ( mod 13)
2135 đồng dư với 3 (mod13)
=> 213597 đồng dư với 397 (mod13)
33 = 27
đồng dư với 1 (mod13)
=> (33)32.3 đồng dư với 132.3= 3 (mod13)
=> 213597 đồng dư với 3
=> 213597 chia hết cho 13
Vậy: 213597 chia hết cho 13
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
bài làm
33 = 27 = 1 (mod 13)
=> (33)667 = 1667 (mod 13)
=> 32001 = 1 (mod 13)
=> 32001.32 = 1.32 (mod 13)
=> 32003 = 9 (mod 13)
vậy ....................
hok tốt
vì 2135 :13 = 164 ( dư 3)
ma UCLN (97;13)=1
=> 213597:13 du 3