Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có 25 \(\equiv\)1 ( mod 13 )
22017 = ( 25 )403 . 22 \(\equiv\)1403 . 2 \(\equiv\)2 ( mod 13 )
nếu là 20172017 thì bằng 1551693,6153
lấy 4 chữ số ở phần thập phân
t.i.c.k cho mình nhé
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Có : 10^2017 = 1000...000 nên có tổng các chữ số là 1
=> 10^2017 chia 3 dư 2
Mà 10^2017 chia hết cho 5
=> 10^2017 chia cho 15 = 3.5 dư 2.5 = 10
Tk mk nha
1/6+3x+2=87
3x+2=87-6
3x+2=81
3x+2=34
x+2=4
x =4-2
x =2
2/
(33-3)chia hết cho x =>30 chia hết cho x
(101-11)chia hết cho x 90 chia hết cho x
x thuộc ƯC(30,90)
30=2.3.5
90=2.3.3.5
ƯCLN(30,90)=2.3.5=30
x thuộc ƯC(30,90)=Ư(30)=1 ,2,3,5,6,10,15,30
Sau khi loại các số không hợp điều kiện ta được các số:15,30
Vậy x = 15,30
3/A=2017+20172+20173+.........+20172018
A=(2017+20172)+(20173+20174)+.......(20172017+20172018)
A=2017.(1+2017)+20173.(1+2017)+..........20172017.(1+2017)
A=2017.2018+20173.2018+..................20172017.2018
=>A chia hết cho 2018