K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2016

ý bạn a và b là 1 hệ pt hả chứ để riêng sao giải. Nếu giải hệ thì là như sau:

5x-y=13<=> y=5x-13. Thay vào pt b ta có: 23x+53(5x-13)=109 <=> 23x+265x=109+53.13. đến đây bạn tự giải

5 tháng 3 2016

bài này thuộc phương trình vô định 

16 tháng 10 2019

a)  \(2x+3y+5z=15\)

Vì (2; 3; 5 ) =1

=> Phương trình sẽ có nghiệm nguyên.

\(pt\Leftrightarrow2x+5z=15-3y\)

Đặt: 15 - 3 y = a 

Phương trình trở thành: \(2x+5z=a\) (1)

Phương trình (1) có 1 nghiệm là: x = -2a và z = a

=> Phương trình (1) có ngiệm tổng quát là: x = - 2a - 5t ; z = a + 2t  (2)

Thế  a = 15 -3y vào (2). Ta có: x = -2 (15-3y ) -5t = -30 + 6y - 5t và z = 15-3y +2t

Vậy phương trình trên có nghiệm:

\(\hept{\begin{cases}x=-30+6y-5t\\z=15-3y+2t\\y,t\in Z\end{cases}}\)

Bài b/ tương tự.

22 tháng 9 2017

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

aaaaaaaaaaaaaaa

23 tháng 1 2019

ko hiểu

16 tháng 10 2019

\(\hept{\begin{cases}x+y+z=100\\5x+3y+\frac{z}{5}=60\end{cases}}\)

<=> \(\hept{\begin{cases}x+y+z=100\\25x+15y+z=300\end{cases}}\)

Trừu vế dưới vơi vế trên:

\(24x+14y=200\)

<=> \(12x+7y=100\)

Có : \(12x⋮4,100⋮4\Rightarrow7y⋮4\Rightarrow y⋮4\)

Đặt: y = 4k, k nguyên dương

Có: \(12x+28k=100\)

<=> \(3x+7k=25\)Vì x, k nguyên dương 

Chọn k = 1 => x = 6 TM. Vậy y = 4, x =6, z =90

Chọn k = 2 => x =11/3 loại

Chọn k= 3 =>  x =4/3 loại

Chọn  \(k\ge4\)=> \(25=3x+28>28\) vô lí.

Vậy x = 6; y= 4, z = 90.

18 tháng 12 2019

Câu hỏi của Trương Tiền Phương - Toán lớp 9 - Học toán với OnlineMath

27 tháng 10 2020

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

18 tháng 10 2018

Ta có:

\(x^3+7y=y^3+7x\)

\(\Leftrightarrow x^3-y^3-7x+7y=0\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\x^2+xy+y^2-7=0\end{cases}}\)

+) \(x-y=0\)\(\Rightarrow x=y=k\left(k\inℕ^∗\right)\)

+) \(x^2+xy+y^2-7=0\)

xét:  \(\Delta=y^2-4\left(y^2-7\right)=-3y^2+28\ge0\)

\(\Rightarrow3y^2\le28\Rightarrow y^2\le9\Rightarrow y\in[1;2;3]\)

Xét từng trường hợp