K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

a)  \(2x+3y+5z=15\)

Vì (2; 3; 5 ) =1

=> Phương trình sẽ có nghiệm nguyên.

\(pt\Leftrightarrow2x+5z=15-3y\)

Đặt: 15 - 3 y = a 

Phương trình trở thành: \(2x+5z=a\) (1)

Phương trình (1) có 1 nghiệm là: x = -2a và z = a

=> Phương trình (1) có ngiệm tổng quát là: x = - 2a - 5t ; z = a + 2t  (2)

Thế  a = 15 -3y vào (2). Ta có: x = -2 (15-3y ) -5t = -30 + 6y - 5t và z = 15-3y +2t

Vậy phương trình trên có nghiệm:

\(\hept{\begin{cases}x=-30+6y-5t\\z=15-3y+2t\\y,t\in Z\end{cases}}\)

Bài b/ tương tự.

12 tháng 11 2017

youtube.com/c/AnimeVietsubchannel

16 tháng 10 2019

Câu hỏi của Phùng Gia Bảo - Toán lớp 9 - Học toán với OnlineMath

16 tháng 10 2019

Câu hỏi của Phùng Gia Bảo - Toán lớp 9 - Học toán với OnlineMath

4 tháng 3 2016

ý bạn a và b là 1 hệ pt hả chứ để riêng sao giải. Nếu giải hệ thì là như sau:

5x-y=13<=> y=5x-13. Thay vào pt b ta có: 23x+53(5x-13)=109 <=> 23x+265x=109+53.13. đến đây bạn tự giải

5 tháng 3 2016

bài này thuộc phương trình vô định 

27 tháng 10 2020

\(2x^2+3y^2+4x=19\)

<=> \(2\left(x^2+2x+1\right)+3y^2=21\)

<=> \(2\left(x+1\right)^2+3y^2=21\)

<=> \(2\left(x+1\right)^2=21-3y^2\ge0\)

=> \(y^2\le7\)(1) 

Mặt khác \(2\left(x+1\right)^2=21-3y^2⋮2\)

=> 21 - 3y^2 là số chẵn  => 3y^2 là số lẻ => y^2 là số chính phương lẻ  (2) 

Từ (1) và (2) => y = 1 hoặc y = - 1=> y^2 = 1 

=> 2 (x + 1)^2 = 18 <=> (x + 1 ) = 9 <=> x + 1 = 3 hoặc x + 1 = - 3 <=> x = 2 hoặc x = -4

Vậy phương trình có 4 nghiệm ( 2; 1) (2; -1); (-4; 1 ); (-4; -1)

13 tháng 11 2016

xy - 2x - 3y + 1 = 0

<=> x(y - 2) = 3y - 1

<=> \(=\frac{3y-1}{y-2}=3+\frac{5}{y-2}\)

Để x nguyên thì (y - 2) phải là ước của 5 hay

(y - 2) = (1, 5, - 1, - 5)

Giải tiếp sẽ ra

13 tháng 8 2018

\(2x^6+y^2-2x^3y=320\)  \(\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)\(\Leftrightarrow\) \(\left(x^3\right)^2+\left(x^3-y\right)^2=320\)

Vì \(\left(x^3\right)^2\ge0\)và  \(\left(x^3-y\right)^2\ge0\). Đồng thời \(\left(x^3\right)^2\)và  \(\left(x^3-y\right)^2\)cũng là hai số chính phương nên :

(  phân tích 320 thành tổng của 2 số chính phương ) 

\(\left(x^3\right)^2+\left(x^3-y\right)^2=8^2+16^2\) ( Do \(\sqrt[3]{16}\)không là 1 số nguyên nên \(x^3=8\))

Vậy ta có 4 trường hợp : 

+) Trường hợp 1: 

\(\hept{\begin{cases}\left(x^3\right)^2=8^2\\\left(x^3-y\right)^2=16^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x^3=8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-8\end{cases}}}\)( TM )

+) Trường hợp 2:

\(\hept{\begin{cases}x^3=8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=24\end{cases}}\left(TM\right)}\)

+) Trường hợp 3:

\(\hept{\begin{cases}x^3=-8\\x^3-y=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-24\end{cases}\left(TM\right)}}\)

+) Trường hợp 4 :

\(\hept{\begin{cases}x^3=-8\\x^3-y=-16\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=8\end{cases}\left(TM\right)}}\)

Vậy phương trình có 4 cặp nghiệm (x;y) nguyên là (-2;8)  ,   (-2;-24 )   ,   (2;-8)    ;   ( 2; 24 )