K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2017

\(ĐK:\)  \(x,y,z\in Z^+\)

Không mất tính tổng quát, ta giả sử  \(1\le x\le y\le z\)  nên từ pt đã cho suy ra 

\(20\ge3x^2+x^3\ge3+x^3\)  

\(\Rightarrow\) \(x^3\le17\)  hay nói cách khác  \(x\le2\)  nên kết hợp với điều kiện ở trên suy ra  \(x\in\left\{1;2\right\}\)

Ta xét các trường hợp sau đây:

\(\Omega_1:\)

13 tháng 3 2017

Bạn xét các trường hợp và đưa ra nghiệm chính xác là  \(\left(x,y,z\right)=\left(2,2,2\right)\)

NV
15 tháng 1 2019

\(2^x\left(1+2^{y-x}+2^{z-x}\right)=2^6.31\)

\(\Rightarrow\left\{{}\begin{matrix}2^x=2^6\\1+2^{y-x}+2^{z-x}=31\end{matrix}\right.\) \(\Rightarrow x=6\)

\(\Rightarrow2^y+2^z=1984-2^6=1920\)

\(\Rightarrow2^y\left(1+2^{z-y}\right)=2^7.15\)

\(\Rightarrow\left\{{}\begin{matrix}2^y=2^7\\1+2^{z-y}=15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=7\\2^{z-y}=14\end{matrix}\right.\)

\(\Rightarrow2^{z-7}=14\Rightarrow\) không tồn tại z nguyên dương thỏa mãn

Vậy phương trình không có nghiệm nguyên dương phù hợp

8 tháng 6 2016

\(\Leftrightarrow4x^2+4x+4=4y^2\Leftrightarrow\left(2x+1\right)^2-4y^2=-3\)-3
\(\Leftrightarrow\left(2x+1-2y\right)\left(2x+1+2y\right)=-3\)
Do x y nguyên nên ta có bảng sau ..................
Tự làm tiếp nmhes bạn
 

17 tháng 6 2016

<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)

Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4

1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x

=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)

2./ 5x2 >= 0 với mọi x

=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)

  • Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
  • Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)

Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2

Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)= (2x2 + x + 1)= 4x4 + 4x3 + 5x2 + 2x + 1

Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4

=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.

Với x = -1 thì y = 1 hoặc -1

Với x = 3 thì y = 11 hoặc -11.

3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).

27 tháng 6 2018

\(\Rightarrow x^4+x^2y^2+x^2+y^2=4x^2y\Rightarrow x^4+x^2y^2+x^2+y^2-4x^2y=0\)

\(\Rightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-x^2y-x^2y+x^2y^2\right)=0\Rightarrow\left(x^2-y\right)^2+\left(x^2\left(1-y\right)-x^2y\left(1-y\right)\right)=0\)

\(\Rightarrow\left(x^2-y\right)^2+\left(x^2-x^2y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)^2\)

vì \(\left(x^2-y\right)^2>=0;x^2\left(1-y\right)^2>=0\Rightarrow\left(x^2-y\right)^2+x^2\left(1-y\right)^2>=0\)

để \(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x^2-y=0\Rightarrow x^2=y\\x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow x^2-y=0\Rightarrow x^2=y;x^2\left(1-y\right)^2=0\Rightarrow x=0\)hoặc \(y=1\)

nếu \(x=0\Rightarrow x^2=0\Rightarrow y=0;y=1\Rightarrow x^2=1\Rightarrow x=1\)

vạy x=0 thì y=0 ; x=1 thì y=1

27 tháng 6 2018

giúp mil vs mn