Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:\) \(x,y,z\in Z^+\)
Không mất tính tổng quát, ta giả sử \(1\le x\le y\le z\) nên từ pt đã cho suy ra
\(20\ge3x^2+x^3\ge3+x^3\)
\(\Rightarrow\) \(x^3\le17\) hay nói cách khác \(x\le2\) nên kết hợp với điều kiện ở trên suy ra \(x\in\left\{1;2\right\}\)
Ta xét các trường hợp sau đây:
\(\Omega_1:\)
Bạn xét các trường hợp và đưa ra nghiệm chính xác là \(\left(x,y,z\right)=\left(2,2,2\right)\)
\(2^x\left(1+2^{y-x}+2^{z-x}\right)=2^6.31\)
\(\Rightarrow\left\{{}\begin{matrix}2^x=2^6\\1+2^{y-x}+2^{z-x}=31\end{matrix}\right.\) \(\Rightarrow x=6\)
\(\Rightarrow2^y+2^z=1984-2^6=1920\)
\(\Rightarrow2^y\left(1+2^{z-y}\right)=2^7.15\)
\(\Rightarrow\left\{{}\begin{matrix}2^y=2^7\\1+2^{z-y}=15\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y=7\\2^{z-y}=14\end{matrix}\right.\)
\(\Rightarrow2^{z-7}=14\Rightarrow\) không tồn tại z nguyên dương thỏa mãn
Vậy phương trình không có nghiệm nguyên dương phù hợp
<=> (2y)2 = 4x4 + 4x3 + 4x2 + 4x + 4 (*)
Đặt P(x) = 4x4 + 4x3 + 4x2 + 4x + 4
1./ 3x2 + 4x + 4 = 3[x2 + 2x*2/3 +(2/3)2] +4 - 4/3 = (x + 2/3)2 + 8/3 > 0 với mọi x
=> P(x) > Q(x) = 4x4 + 4x3 + 4x2 + 4x + 4 - (3x2 + 4x + 4) = 4x4 + 4x2 + x2 = (2x2 + x)2 (1)
2./ 5x2 >= 0 với mọi x
=> P(x) <= 4x4 + 4x3 + 4x2 + 4x + 4 + 5x2 = 4x4 + 4x3 + 9x2 + 4x + 4 = 4x4 + x2 + 4 + 2.2x2.x + 2.2x2.2 + 2.x.2 = (2x + x + 2)2 (2)
- Với x = 0 thì PT có 2 nghiệm là (x=0;y=1) và (x=0;y=-1)
- Với x khác 0 thì: P(x) < (2x + x + 2)2 với mọi x (2)
Từ (1) và (2) suy ra: (2x2 + x)2 < P(x) = (2y)2 < (2x + x + 2)2
Do đó số chính phương (2y)2 bị kẹp giữa 2 số chính phương chẵn (hoặc lẻ) liên tiếp. Nên 2|y| chỉ có thể là số kẹp giữa |2x2 + x| và |2x2 + x + 2| => 2|y| = |2x2 + x + 1| Khi đó (2y)2 = (2x2 + x + 1)2 = 4x4 + 4x3 + 5x2 + 2x + 1
Thay vào (*) => 4x4 + 4x3 + 5x2 + 2x + 1 = 4x4 + 4x3 + 4x2 + 4x + 4
=> x2 - 2x - 3 = 0 => (x + 1)(x - 3) = 0.
Với x = -1 thì y = 1 hoặc -1
Với x = 3 thì y = 11 hoặc -11.
3./ Vậy PT có 6 cặp nghiệm nguyên là: (0;1); (0;-1); (-1;1); (-1;-1); (3;11); (3;-11).
\(\Rightarrow x^4+x^2y^2+x^2+y^2=4x^2y\Rightarrow x^4+x^2y^2+x^2+y^2-4x^2y=0\)
\(\Rightarrow\left(x^4-2x^2y+y^2\right)+\left(x^2-x^2y-x^2y+x^2y^2\right)=0\Rightarrow\left(x^2-y\right)^2+\left(x^2\left(1-y\right)-x^2y\left(1-y\right)\right)=0\)
\(\Rightarrow\left(x^2-y\right)^2+\left(x^2-x^2y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)\left(1-y\right)=\left(x^2-y\right)^2+x^2\left(1-y\right)^2\)
vì \(\left(x^2-y\right)^2>=0;x^2\left(1-y\right)^2>=0\Rightarrow\left(x^2-y\right)^2+x^2\left(1-y\right)^2>=0\)
để \(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x^2-y=0\Rightarrow x^2=y\\x^2\left(1-y\right)^2=0\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\end{cases}}\)\(\left(x^2-y\right)^2+x^2\left(1-y\right)^2=0\Rightarrow x^2-y=0\Rightarrow x^2=y;x^2\left(1-y\right)^2=0\Rightarrow x=0\)hoặc \(y=1\)
nếu \(x=0\Rightarrow x^2=0\Rightarrow y=0;y=1\Rightarrow x^2=1\Rightarrow x=1\)
vạy x=0 thì y=0 ; x=1 thì y=1