Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
3x+2y=7
\(\Leftrightarrow3x=7-2y\)
\(\Leftrightarrow x=\dfrac{7-2y}{3}\)
Vậy: \(\left\{{}\begin{matrix}y\in R\\x=\dfrac{7-2y}{3}\end{matrix}\right.\)
3x+5y=501
=> x=(501-5y)/3 =167 - 5.y/3
x,y nguyên dương
=> 167 - 5/3y>0 và 5.y/3 nguyên
=> 1<=y<=100 và y chia hết cho 3.
Từ 1 đến 100 có 33 số chia hết cho 3.
Vậy có 33 nghiệm nguyên dương của phương trình 3x + 5y =501
ta có : 3x chia hết cho 3 (1)
501 chia hết cho 3 (2)
từ (1) và (2) => 5y chia hết cho 3
mà (3;5) = 1 ( nguyên tố cùng nhau )
nên y chia hết cho 3
vậy y = 3k
thay y=3k vào phương trình ta có :
3x + 15k = 501
\(<=>x=\frac{501-5k}{3}\)
Thay x = 3, y = 5 vào vế trái của phương trình (3) ta được:
VT = 5.3 – 2.5 = 15 – 10 = 5 = VP
Vậy (x; y) = (3; 5) là nghiệm của phương trình (3).
Hệ phương trình đã cho có nghiệm (x; ) = (3; 5)
Thay x = -3, y = 31/5 vào vế trái của phương trình (2), ta được:
VT = -3.(-3) + 2.31/5 = 9 + 62/5 = 107/5 ≠ 22 = VP
Vậy (x; y) = (-3; 31/5 ) không phải là nghiệm của phương trình (2).
Hệ phương trình đã cho vô nghiệm.
Vì (3;5)=1 nên pt có nghiệm nguyên
\(3x-5y=9\\ \Rightarrow y=\frac{3x-9}{5}=\frac{1-2x}{5}+x-2\)
Đặt t=\(\frac{1-2x}{5}\left(t\in Z\right)\)
\(\Rightarrow x=\frac{1-5t}{2}\)\(=\frac{t-1}{2}+1-3t\)
Đặt n=\(\frac{t-1}{2}\left(n\in Z\right)\)\(\Rightarrow t=2n+1\)
\(\Rightarrow\begin{cases}y=t+x-2\\x=n+1-3t\\t=2n+1\end{cases}\Rightarrow\begin{cases}y=-3n-3\\x=-5n-2\end{cases}\left(n\in Z\right)}}\)
\(\Leftrightarrow y=\dfrac{3x-9}{5}=\dfrac{3\left(x-3\right)}{5}\)\(\Rightarrow x-3⋮5\)\(\Rightarrow x=5k+3\left(k\in Z\right)\)\(\Rightarrow y=\dfrac{3.5k}{5}=3k\)
Vậy pt có vô số nghiệm với nghiệm tổng quát (x;y)=(5k+3\(\left(k\in Z\right)\) ;3k).
To approve a single suggestion, mouse over it and click "✔" Click the bubble to approve all of its suggestions.