K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)

Vì \(2y⋮2\)

\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)

Đặt \(x=2k+1\left(k\in Z\right)\)

Thay vào (1), ta được :

\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)

Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)

\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)

24 tháng 1 2020

\(a,\hept{\begin{cases}2x+my=m-1\\mx+2y=3-m\end{cases}\Leftrightarrow}\hept{\begin{cases}2mx+m^2y=m^2-m\\2mx+4y=6-2m\end{cases}}\)

Trừ vế cho vế ta được:\(\left(m^2-4\right)y=m^2+m-6\left(1\right)\)

- Nếu \(m^2-4=0\Leftrightarrow m=\pm2\)

  • \(m=2\left(1\right)\Leftrightarrow0y=0\)(luôn đúng)

Hệ có vô nghiệm. \(x=-y+\frac{1}{2}\)(Không thỏa \(x\in R\)khi \(y\in Z\))

  • \(m=-2\left(1\right)\Leftrightarrow0y=-4\left(vn\right)\)

- Nếu \(m\ne\pm2\left(1\right)\Leftrightarrow y=\frac{m+3}{m+2}\) 

Ta tìm được \(x=-\frac{m+1}{m+2}\)

Hệ có nghiệm duy nhất:

\(\hept{\begin{cases}x=-\frac{m+1}{m+2}\\y=\frac{m+3}{m+2}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1+\frac{1}{m+2}\\y=1+\frac{1}{m+2}\end{cases}}\)\(x,y\in Z\Leftrightarrow\frac{1}{m+2}\in Z;m\in Z\)

\(\Leftrightarrow\orbr{\begin{cases}m+2=1\\m+2=-1\left(m\in Z\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=-1\\m=-3\end{cases}}\)

\(b,\)Với \(m\ne\pm2\)Hệ có nghiệm duy nhất: \(\hept{\begin{cases}x_0=-1+\frac{1}{m+2}\\y_0=1+\frac{1}{m+2}\end{cases}}\)

Trừ vế cho vế ta được: \(x_0-y_0=-2\)

Đây là hệ thức liên hệ giữa \(x_0\)và \(y_0\)không phụ thuộc vào \(m\)

\(\hept{\begin{cases}3x-2y=1\\mx+3y=4\end{cases}}\)

\(\hept{\begin{cases}3x=1+2y\\mx+3y=4\end{cases}}\)

\(\hept{\begin{cases}x=1+\frac{2y}{3}\\mx+3y=4\end{cases}}\)

a, Khi thay m = 1 thì biểu thức mx + 3y ta đc

\(x+3y=4\)

Hệ phương trình trở thành : \(\hept{\begin{cases}x=1+\frac{2y}{3}\\x+3y=4\end{cases}}\)

Ta thay x vào biểu thức x + 3y = 4 ta đc

\(1+\frac{2y}{3}+3y=4\)

\(1+\frac{2y}{3}+\frac{9y}{3}-4=0\)

\(-3+\frac{11y}{3}=0\)

\(\frac{11y}{3}=3\Leftrightarrow11y=9\Leftrightarrow y=\frac{9}{11}\)

Ta thay y = 9/11 vào biểu thức x + 3y ta đc

\(x+3.\frac{9}{11}=4\)

\(x+\frac{27}{11}=4\)

\(x=\frac{17}{11}\)

Vậy \(\left\{x;y\right\}=\left\{\frac{17}{11};\frac{9}{11}\right\}\)

20 tháng 3 2021

Bài 1 : x² + x² -12 = 0

a = 1 , b = 1 , c = -12

∆ = 1 -4 × 1 × (-12) 

∆ = 49 > 0 .✓49 =7

Vậy pt có 2 ng⁰ pb ( tự viết nhé ) !

NM
19 tháng 1 2021

a, tại m=2 thì hệ tương đương với\(\hept{\begin{cases}x+2y=2\\2x-y=2\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\4x-2y=4\end{cases}\Leftrightarrow\hept{\begin{cases}x+2y=2\\5x=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{2}{5}\end{cases}}}} }\)

b, do thay (x,y)=(2,-1) vào phương trình x+2y=2 không thỏa mãn nên hệ phương trình không nhận cặp (x,y)=(2,-1) là nghiệm