K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2021

1.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)

\(\Leftrightarrow0< m< \dfrac{25}{12}\)

5 tháng 1 2021

3.

Yêu cầu bài toán thỏa mãn khi:

\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)

\(\Leftrightarrow2< m< 11\)

NV
27 tháng 9 2020

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)-m-1=0\)

\(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-m-1=0\)

Đặt \(x^2+6x+7=\left(x+3\right)^2-2=t\ge-2\) ta được:

\(\left(t-2\right)\left(t+1\right)-m-1=0\)

\(\Leftrightarrow t^2-t-m-3=0\) (1)

a/ Bạn tự giải (thay số bấm máy ez)

b/ Pt có nghiệm thỏa \(x^2+6x+7\le0\) khi và chỉ khi (1) có nghiệm \(t\in\left[-2;0\right]\)

Ta có: \(\left(1\right)\Leftrightarrow t^2-t-3=m\)

Xét hàm \(f\left(t\right)=t^2-t-3\) trên \(\left[-2;0\right]\)

\(a=1>0;\) \(-\frac{b}{2a}=\frac{1}{2}>0\Rightarrow f\left(t\right)\) nghịch biến trên \(\left[-2;0\right]\)

\(\Rightarrow f\left(0\right)\le f\left(t\right)\le f\left(-2\right)\Rightarrow-3\le f\left(t\right)\le3\)

\(\Rightarrow-3\le m\le3\)

M(x1;8x1+3); B(1/8y1+3/8;y1); N(x2;14/13x2-9/13); C(13/14y2+9/14; y2)

Theo đề, ta có: (13/14y2+4+9/14)=2x1 và y2-1=16x1+6

=>x1=13/90 và y2=-211/45

=>M(13/90; 187/45); C(-167/45; -211/45)

Theo đề, ta có:

1/8y1+3/8+4=2x2 và y1-1=2(14/13x2-9/13)

=>2x2-1/8y1=35/8 và 28/13x2-y1=-1+18/13=5/13

=>x2=5/2; y1=5

=>N(5/2;2); B(1/2;5)

17 tháng 7 2017

bài 1

coi bậc 2 với ẩn x tham số y D(x) phải chính phường

<=> (2y-3)^2 -4(2y^2 -3y+2) =k^2

=> -8y^2 +1 =k^2 => y =0

với y =0 => x =-1 và -2